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1.

Introduction

A number of recent theoretical and experimental
papers have investigated the ability to coherently

control or “engineer” atomic, molecular, and optical
gquantum states. This theme is manifested in topics such[1]. The attendant ability to create correlated, or entan-
as atom interferometry, atom optics, the atom laser, gled, states of atomic particles appears to be interesting
Bose-Einstein condensation, cavity QED, electromag- from the standpoint of quantum measurement [54] and,
netically induced transparency, lasing without inver- for example, for improved signal-to-noise ratio in
sion, quantum computation, quantum cryptography, spectroscopy of trapped ions (Sec. 3.4).
quantum-state engineering, squeezed states, and Therefore, we will be particularly interested in study-
wavepacket dynamics. In this paper, we investigate a ing the practical limits of applying coherent control
subset of these topics which involve the coherent methods to trapped ions for (1) the generation and
manipulation of quantum states of trapped atomic ions. analysis of nonclassical states of motion, (2) the imple-
The focus will be on a proposal to implement quantum mentation of quantum logic and computation, and (3)
logic and quantum computation using trapped ions [1]. the generation of entangled states which can improve
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However, we will also consider related work on the
generation of nonclassical states of motion and entan-
gled states of trapped ions [2—39]. Many of these ideas
have been summarized in a recent review [40].

Coherent control of spins and internal atomic states
has a long history in NMR and rf /laser spectroscopy.
For example, the ability to realize coherent pulses”
or “m/2 pulses” on two-level systems has been routine
for decades. In much of what is discussed in this paper,
we will consider entangling operations, that is, unitary
operations which create entangled states between two or
more separate quantum systems. In particular, we will
be interested in situations where the interaction between
quantum systems can be selectively turned on and off.
For brevity, we will limit discussion to these types of
operations in experiments which involve trapped
atomic ions; however, many of the discussions, in
particular those concerning single trapped ions, will
also apply to trapped neutral atom experiments where
the atoms can be treated as independent. The aspect of
entangling operations is shared by atom optics and atom
interferometry [41, 42] and, as described below, there
are close parallels between the ion trap experiments and
those of cavity QED [43].

Earlier experiments on trapped ions, where the zero-
point of motion was closely approached through laser
cooling, already showed the effects of nonclassical
motion in the absorption spectrum [44-46]. These same
effects can be used to characterize the average energy of
the ion. More recent experiments report the generation
of Fock, squeezed, coherent [21], and Sdimger cat
[47] states. These states appear to be of fundamental
physical interest and possibly of use for sensitive detec-
tion of small forces [26, 48]. For comparison, experi-
ments which detect quantized atomic motion in optical
lattices are reviewed by Jessen and Deutsch [49]. Also,
through the mechanism of Bose-Einstein condensation,
which has recently been observed in neutral atomic
vapors [50-53], a macroscopic occupation of a single
motional state (the ground state of motion) is achieved.

Simple guantum logic experiments have been carried
out with single trapped ions [17]; the emphasis of future
work will be to implement quantum logic on many ions
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signal-to-noise ratio in spectroscopy. We will briefly 2. Trapped Atomic lons
describe the experimental results in these three areas
but the main purpose of the paper will be to anticipate

and characterize decohering mechanisms which limit  pe to their net charge, atomic ions can be confined
the ability to produce the desired final quantum states in by particular arrangements of electromagnetic fields.
current anq future experiments. This is a particularly For studies of ions at low energy, two types of trap are
important issue for quantum computation where many typjcally used—the Penning trap, which uses a combi-
ions (thousands) and coherent operations (billions) may nation of static electric and magnetic fields, and the Paul
be required in order for quantum computation to be or rf trap which confines ions primarily through pon-
generally useful. Here, we generalize the meaning of geromotive forces generated by inhomogeneous oscil-
decoherence to include any effect which limits the |ating fields. The operation of these traps is discussed in
purity of the desired final states. A fundamental source \arious reviewgsee for example, Refs. [67]-[70]), and
of decoherence will be the coupling of the ion’s motion i, 4 recent book by Ghosh [71]. For brevity, we discuss
and internal states to the environment. Also importantis gne trap configuration, the linear Paul trap, which may
induced decoherence caused by, for example, technicalpe particularly useful in the context of this paper. This
fluctuations in the applied fields used to implement the chgice however, does not rule out the use of other types
operations. This division between types of decoherence uf jon traps for the experiments discussed here.
is arbitrary since both effects can be regarded as |y Fig. 1 we show a schematic diagram of a linear
coupling to the environment; however, the division will  pg| trap. This trap is based on the one described by
provide a useful framework for discussion. As a unify- Raijzen et al. [72] which is derived from the original
ing theme for the paper, we will find it useful to regard, - gesign of Drees and Paul [73]. It is basically a quadru-
as much as possible, the quantum manipulations we pole mass filter which is plugged at the ends with static
discuss in terms of quantum logic. Of course, the sub]_e_ct electric potentials. A potentidl,cos(2:t + U, is applied
of decoherence is much broader than the specific hetween diagonally opposite rods, which are fixed in a
context discussed here; the reader is referred to Moréquadrupolar configuration, as indicated in Fig. 1. We
general discussions such as the papers by Zurekassyme that the rod segments alongzitérection are
[55,56,57]. _ ~ coupled together with capacitors (not shown) so that the
The paper is organized as follows. In the next section, f potential is constant as a function of Near the axis

we briefly discuss ion trapping. In Sec. 3, we consider of the trap this creates a potential of the form
in somewhat more detail the three areas of application

enumerated in the previous paragraph. Since cooling of
the ions to their ground state of motion is a prerequisite (Vocosrt + U)) x%—y?
. N . . P = 1+——), Q)
to the main applications discussed in the paper, we out- 2 R
line methods to accomplish this in the beginning of Sec.

3. Section 4 is the heart of the paper; here, we attemptyyhereR is equal to the distance from the axis to the
to identify the most important sources of decoherence. g rface of the electrode. (Unless the rods conform to
Section 5 briefly discusses some variations on PrOPOSEdequipotentials of Eq. (1), this equation must be multi-
methods for realizing quantum logic in trapped ions. plied by a constant factor on the order of 1; see for
Section 6 suggests some additional applications of theexample, Ref. [72].) This gives rise to (harmonic)
ideas discussed in the paper and Sec. 7 provides a briebonderomotive potentials in theandy directions. To
summary. provide confinement along thedirection, static poten-
Such a treatment seems warranted in that several lab+g|s U, are applied to the end segments of the rods as

oratories are investigating the use of trapped ions for jhgicated. Near the center of the trap, this provides a
quantum logic and related topics; the authors are awaregiatic harmonic well in the direction

of related experiments being pursued at IBM, Almaden;

Innsbruck University; Los Alamos National Labora- 1 m 1

tory; Max Planck Institute, Garching; NIST, Boulder; ¥s= KUO[ZZ -5+ yz)] = 2_(1‘*’22[22 -5+ yz)]’

and Oxford University. This analysis in this paper

necessarily overlaps, butis also intended to complement, (2)
other investigations [58—66] and will, by no means, be

the end of the story. We hope however, that this paper wherex is a geometric factom andq are the ion mass
will stimulate others to do more complete treatments and charge, and, = (2kqU,/m)*2 is the oscillation
and consider effects that we have neglected. frequency for a single ion or the center-of-mass (COM)

2.1 lons Confined in Paul Traps
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sectionsg; (or a) will represent the harmonic oscillator

X
y lowering operator and will represent the normal mode
U oV U, > coordinate for théth mode). The solution of Egs. (3) to
= first order ing; and second order ig is given by

(, (fy — (fL 72'_%— u(t) = A(cos@it + ) [1 + % cos((t)
COT 7 S0 0~ |

Vo.cosQrt + U.

2
i

+ g—zcos(mﬂ)] + Bi%Sin(wit + ) sin(!)ﬂ)) , (4)

whereu; = x ory, A, depends on initial conditions, and

= 2 W ERWEE FRESEIRINDE SRR ERENERS N $ ¥

o =82 B = [a+ @/ ©)

Fig. 1. The upper part of the figure shows a schematic diagram of
the electrode configuration for a linear Paul-rf trap (rod spaeing

1 mm). The lower part of the figure shows an image of a string of The large amplitude oscillation at frequeneyis typi-
19%Hg" ions, illuminated with 194 nm radiation, taken with a uv-sensi- cally called the “secular” motion. Whes << g? << 1
tive, photon counting imaging tube [74]. The spacing between adja- . . . '

cent ions is approximately 0m. The “gaps” in the string are occu- an(_j Ur = Q' if we negleCt the mlcromotlon (the te_rms
pied by impurity ions, most likely other isotopes of Havhich do not which oscillate at(2; and ), the ion behaves as if it
fluoresce because the frequencies of their resonant transitions do notwere confined in a harmonic pseudopotentiglin the
coincide with those of the 194 nf%;;, — 2Py, transition of ' **Hg". radial direction given by

oscillation frequency for a collection of identical ions I

along thez direction. Equations (1) and (2) represent the qP, = 5 Mar(x” +y7) (6)
lowest order terms in the expansion of the potentials for

the electrode configuration of Fig. 1. When the size of " B ) ,

the ion sample or amplitude of ion motion is Wherew =qVo/(2"mR’) = quT/(Z\_/E) is the radial
comparable to the spacing between electrodes or theSecular freqyency)r. For most of the d|§cu55|ons in this
spacing between rod segments, higher order ternds in  PaPer, we will assum#; = 0; however it may be useful
and &, become important. However for small oscilla- " SOMe cases to make # 0 to break the degeneracy
tions of the COM mode, which is relevant here, the of thex andy frequencies. Figure 1 also shows an image
harmonic approximation will be valid. In the andy ofa ‘_‘string” of ***Hg" ions _vvhich are confined near the
directions, the action of the potentials of Egs. (1) and (2) Z @is of the trap described in Ref. [74]. This was

gives the (classical) equations of motion described by achieved by making: >> ,, thereby forcing the ions
the Mathieu equation to the axis of the trap. The spacings between individual

ions in this string are governed by a balance of the force
, along thez direction due tabs and the mutual Coulomb

d_>§ + [ax + 2qxcos(Z)] x=0 repu!smn of thg ions. Example parameters are given in
dg the figure caption.
& When this kind of trap is installed in a high-vacuum
T (s meosmy=o. @ R o e o e

background gas can be neglected (Sec. 4.1.9). Even

though the ions interact strongly through their mutual
where { = Ort/2, a, = (49/m0F)(U/R? - kUo/Z), Coulomb interaction, the fact that the ions are localized
a, = — (4a/m2?) (U/R? + xUo/Z8), = —0y = 2Vo/ necessarily means that the time-averaged value of the
(QfmR?). The Mathieu equation can be solved in electric field they experience is zero; therefore electric
general using Floquet solutions. Typically, we will have  field perturbations are small (Sec. 4.2.3). Magnetic field
& < g’ << 1,i € {x, y}. (Keeping with the usual  perturbations to internal structure are important; how-
notation in the ion-trap literature, in this section, the ever, the coherence time for superposition states of two
symbolsg and g are defined as above. In all other internal levels can be very long by operating at fields
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where the energy separation between levels is at anseparation of two

extremum with respect to field. For example, ifBe"
(Penning trap) experiment operating in a field of 0.82 T,

ions iss, 2'%s,  where
s = (q¥4msomw?)® is a length scale of ion-ion
spacings; the adjacent separation of three ions is

a coherence time between hyperfine levels exceeding 10s; = (5/4)*°s. For L large, estimates of the minimum

min was observed [75, 76]. As described below, we will

separation of the center ions are given bByL)

be interested in coherently exciting the quantized modes = 2sL7°%¢[60], 2.01&L-°**°[61], 2.29.7%°%¢[83], and

of the ions’ motion in the trap. Here, not surprisingly,
the coupling to the environment is relatively strong be-

1.9L-%% [In(0.8L)]*® [59, 81]. For typical trapping
parameters, the ion-ion separations are on the order of a

cause of the ions’ charge. One measure of the decoherfew wm and the spatial spread of the zero-point vibra-

ence rate is obtained from the linewidth of observed
motional resonances of the ions; this gives an indication
of dephasing times. For example, the linewidths of
cyclotron resonance excitation in high resolution mass
spectroscopy in Penning traps [77-79] indicate that

tional wavepackets are on the order of 10 nm. Thus there
is negligible wavefunction overlap between ions and
guantum statistics (Bose or Fermi) play no role in the
spatial wavefunction of an array.

Of the & normal modes of oscillation in a linear trap,

these coherence times can be at least as long as severale are primarily interested in the modes associated
tens of seconds. Decoherence can also occur from tran-with axial motion because we will preferentially couple

sitions between the ions’ quantized oscillator levels.
Transition times out of the zero-point motional energy
level have been measured for singl8Hg" ions to be
about 0.15 s [44] and for singfBe" ions to be about

1 ms [45]. These relatively short times are, so far, unex-
plained; however, it might be possible to achieve much
longer times in the future (Sec. 4.1).

In the linear trap, the radial COM vibration frequency
w; must be made sufficiently higher than the axial COM
vibrational frequencyw, in order for the ions to be
collinear along the axis of the trap. This configuration
will aid in addressing individual ions with laser beams

to them with applied laser fields. A remarkable feature
of the linear ion trap is that the axial mode frequencies
are nearly independent &ff1,60,61,84]. For two ions,
the axial normal mode frequencies aresaandV/3w;;
for three ions they are»,, V3w,, and (5.8Y? w,. For
L > 3 ions, theLth axial normal mode can be deter-
mined numerically [60,61,84].
2.2 lon Motional and Internal Quantum States

A single ion’s motion, or the COM mode of a collec-
tion, has a simple description when the ions are trapped

and will also suppress rf heating (Sec. 4.1.5). To prevent in a purely static potential, which is the case for the axial

zig-zag and other complicated shapes of the ion crystal,

we requirewm,/w, > 1 for two ions, andv,/w, > 1.55 for
three ions. Fot > 3 ions, the critical ratio d,/w,). for
linear confinement has been estimated analytically [80,
81] yielding (w/w,). = 0.73.°¢[60]. Other estimates
are given in Refs. [82] [o/w;). = 0.63.°%] and [64]
[(wdw,). = 0.59.°89. An equivalent result is obtained

if we consider that as the potential is weakened in the
radial direction, ions in a long string which are spaced
by distances. near the center of the string, will first
break into a zig zag configuration. At the point where
the ions break into a zig-zag, the net outward force from
neighboring ions is equal to the inward trapping force.
If we equate these forces, we obtain

2_ 7

w -—
" 8meo

(@5,

()

where{ is the Riemann zeta function. As an example,
for °Be’ ions, m = 9 u (atomic mass units) and
S = 3 wm, we must havev,/27 > 7.8 MHz to keep the
ions along the axis of the trap.

The equilibrium spacing of a linear configuration of

motion in a Penning trap or the axial motion in the trap
of Fig. 1. We will assume that the trap potentials are
quadratic [Egs. (1) and (2)]. This is a valid approxima-
tion when the amplitudes of motion are small, because
the local potential, expanded about the equilibrium point
of the trap, is quadratic to a good approximation. In this
case, motion is harmonic. An ion trapped in a pondero-
motive potential [Eq. (6)] can be described effectively as
a simple harmonic oscillator, even though the Hamilto-
nian is actually time-dependent, so no stationary states
exist. For practical purposes, the system can be treated
as if the Hamiltonian were that of an ordinary,
time independent harmonic oscillator [34,35,85-91]
although modifications must be made for laser cooling
[92]. The classical micromotion (the terms which vary
as cos2;t and cosZ);tin Eq. (4)] may be iewed, in the
quantum picture, as causing the ion’s wavefunction to
breathe at the drive frequendy;. This breathing mo-
tion is separated spectrally from the secular motion [(at
frequenciesw, and w, in EQ. (4)]. Since the operations
we will consider rely on a resonant interaction at the
secular frequencies, we will average over the compo-
nents of motion at the drive frequen€ys. Therefore, to

trapped ions is not uniform; the middle ions are spaced a good approximation, the pseudopotential secular
closer than the outlying ions, as is apparent in Fig. 1. The motion behaves as an oscillator in a static potential.
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main consequence of the quantum treatment is thatfrequency, w,>> w,.We label the internal eigenstates

transition rates between quantum levels (Eq. (18),

IM;) = |1) and|t) representing “spin-up” and “spin-

below) are altered [34, 35]; however, these changes candown” respectively, and for convenience, will assume

be accounted for by experimental calibration. In any

case, for most of the applications discussed in this paper,

we will be considering the motion of the ions along the
axis of a linear Paul trap where this modification is
absent.

Therefore, the Hamiltonian describing motion of a
single ion (or a normal mode, such as the COM mode,
of a collection of ions) in théth direction is given by

Hose = Zwify, i E{X,y,2} , (8)
wheref; = a” a; anda; anda; are the usual harmonic
oscillator raising and lowering operators and we have
suppressed the zero-point energy7ké2 The operator
for the COM motion in thez direction is given by

z=z(@+a"), 9)
wherez, = (4/2mw,)*? is the spread of the zero-point
wavefunction andm is the ion mass. That isz =
({0|z%0»)"2, where|n) is thenth eigenstate (“number”
or Fock state) of the harmonic oscillator. F&e" ions
in a trap wherew,/27 = 10 MHz, we haveg, = 7.5 nm.

uw < 0 so that the energy of tHe) state is higher than
the|. ) state. A general pure state of the two-level system
is then given by
ot i

1I/intemalzcie 2 |l>+cwe 2 |T>1 (12)
where|C,|?+|C,| > = 1. Of course, the two-level system
really could be &= 1/2 spin such as a trapped electron
or the ground state of an atomic ion with a single

unpaired outer electron and zero nuclear spin such as
24Mg+

2.2.1 Detection of Internal States

The applications considered below will benefit from
high detection efficiency of the ion’s internal states.
Unit detection efficiency has been achieved in experi-
ments on “quantum jumps” [95-99] where the internal
state of the ion is indicated by light scattering (or lack
thereof), correlated with the ion’s internal state. (More
recently, this type of detection has been used in spec-
troscopy so that the noise is limited by the fundamental
quantum fluctuations in detection of the internal state

Therefore, a general pure state of motion for one mode [100]. In these experiments, detection is accomplished

can be written, in the Schdinger picture, as

lPmotion = E Cneinw‘t|n> ’ (10)
n=0

whereC, are complex and thim) are time-independent.
For applications to quantum logic, we will be interested
in motional states of the simple formx|O)+
Bexp(—iwt)|1).

We will be interested in the situation where, at any
given time, we interact with only two internal levels of
an ion. This will be accomplished by insuring that the

with a laser beam appropriately polarized and tuned to
a transition that will scatter many photons if the atom is
in one internal state (a “cycling” transition), but will
scatter essentially no photons if the atom is in the other
internal state. If a modest number of these photons are
detected, the efficiency of our ability to discriminate
between these two states approaches 100 %. We note
that for a string of ions in a linear trap, the scattered light
from one ion will impinge on the other ions; this can
affect the detection efficiency since the scattered light
will, in general, have a different polarization.

The overall efficiency can be explained as follows.

internal states are nondegenerate and by using resonarSuppose the atom scattel$ total photons if it is

excitations to couple only two levels at a time. We will
find it convenient to represent a two-level system by its
analogy with a spin-1/2 magnetic moment in a static
magnetic field [93, 94]. In this equivalent representation,
we assume that a (fictitious) magnetic moment
©~ = umS, whereS is the spin operator§ = 1/2), is
placed in a (fictitious) magnetic field = Byz. The
Hamiltonian can therefore be written
Hinternal = ZwoS; , (11)
wheresS, is the operator for the component of the spin

and wg = — uwBo/7. Typically, the internal resonant
frequency will be much larger than any motional mode

264

measured to be in state) and no photons if it is mea-
sured to be in statg ). In practiceN will be limited by
optical pumping but can be 1@r higher [101]. Here,
we assume that is large enough that we can neglect its
fluctuations from experiment to experiment. We
typically detect only a small fraction of these photons
due to small solid angle collection and small detector
efficiency. Therefore, on average, we detagt 14N
photons whereny << 1 is the net photon detection
efficiency. If we can neglect background, then for each
experiment, if we detect at least one scattered photon,
we can assume the ion is in stgte. If we detect
no photons, the probability of a false reading, that is, the
probability the ion is in stat& ) but we simply did not
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detect any photons, is given byPy(0) = In this interaction picture, if we make the rotating-wave
(1 =) = exp(-ng). Forng = 10, Py(0) = 4.5X 107, approximation (neglecting expr( (w + wo)t) terms),
for ny = 100,Py(0) = 4 X 10*. Therefore fom, > 10, the wavefunction can be written
detection can be highly efficient.

Detection of ion motion can be accomplished directly _ -
by observing the currents induced in the trap electrodes V= NZ‘,T n% Cuzn(©) M2 ) (15)

[77-79, 102-104]. However, the sensitivity of this
method is limited by electronic detection noise. Because yhere [M,) and|n) are the time-independent internal

the detection of internal states can be so efficient, mo- and motional eigenstates. In general, this wavefunction
tIOI’]a|. states can be dett_—zcted by mapping their propertiesyjj| pe entangled between the two degrees of freedom:;
onto internal states which are then detected (Sec. 3.2).that is, we will not be able to write the wavefunction as

a product of internal and motional wavefunctions.

2.3 Interaction With Additional Applied Electro- We have H - H) = UG(t)HiUq(t) where Uot) =
magnetic Fields o _ exp(—i (Ho/%)t), resulting in

2.3.1 Single lon, Single Applied Field, Single Mode
of Motion

H' = 420 —iwt + Deiwzt — ot +
We first consider the situation where a single, period- ' S-exp((n(ae a ) D

ically varying, (classical) electromagnetic field propa-
gating along the direction is applied to a single trapped
ion which is constrained to move in tlzadirection in a
harmonic well with frequencys,. We consider situa- Where n = kz is the Lamb-Dicke parameter and
tions where fields resonantly drive transitions between S. S, &, and a” are time independent. We will be
internal or motional statesnd when they drive transi- ~ Primarily interested in resonant transitions, that is,
tions between these states simultaneously (entangle-wheres = w,(n'—n) wheren' andn are integers. How-
ment). If we assume that the internal levels €Ver,since we wantto consider nonideal realizations, we

are coupled by electric fields, then the interaction Will assumed = (n'—n) w, + A where|A| << w,, Q. If

+he. (6= w-—w), (16)

Hamiltonian is we can neglect couplings to other levels (see Sec. 4.4.6),
transitions are coherently driven between levelsn)
Hi=—ms- E(z, 1), (13) and|t, n') and the coefficients in Eqg. (15) are given by

Schralinger’'s equationZdW¥ /ot = H; ¥ to be
whereu, is the electric dipole operator for the internal
transition andE is from a uniform wave propagating )
along thez direction and polarized in the direction, Cn=—itr=mei=9 0. C,
E = EiXcoskz —wt + ¢), wherew is the frequencyk is
the wavevector 2/A, and X is the wavelength. In the
equivalent spin-1/2 analog, we assume that a traveling
wave magnetic field propagates along #hdirection, is
polarized in thex direction B = B;X coskz — wt + ¢)], where ), , is given by [105, 106]
and interacts with the fictitious spinu( = uuS).
Therefore, for the spin analog, Eq. (13) is replaced by

Cl n = _i(l—ln'—n\) ei(At_(/))Qn' n CT n's (17)

Oy = Q)| e7@ D n))|
H| =—Mm - B(Z, t)
= Oexp[-n2](nd/n)¥2 pih=nL, I"=rl(n?) | (18)

- ﬁQ(S,, + S_) (ei(kZ—wt+(j)) + e—i(kz—mt+¢)) , (14)
wheren.(n.) is the lesser (greater) of andn, andLy

where %0 =— uuBi/4 (or —udEd4 for an electric is the generalized Laguerre polynomial

dipole), S, = S, +iS), S = S —iS, and z is given by .

Eq. (9). \Ne wiI.I assume that the lifetimes of the Igyels Le (X) = 2 (=1)" <n + 01) &:‘ _ (19)
are long; in this case, the spectrum of the transitions m=0 n-m m

excited by the traveling wave is well resolved(f is

sufficiently small. Since we will be particularly interested in small values
It will be useful to transform to an interaction picture of n and «, for convenience, we list a few values of
Where we aSSUITHo = Hinternal+ Hoscandvinteraction: HI- L# (X)
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2
LX) =1, LAX) = 1 =X, LOX) 1= X + 23 Lo(X) = 1 —3><+g x?-%x3
LE(X) = 1, LA(X) = 2 =X, LA(X) = 3 —3><+%x2, LX) = 4 — 6 + 2x2—%x3
2 — 2 — 2 — 1 2 2 — 5 2 1 3
LO(X) = 1, Ll(X) =3 —X, Lz(X) =6 —4X+§X s L3(X) =10 - 1X +§X —EX (20)
Equations (17) can be solved using Laplace transforms.
The solution shows sinusoidal “Rabi oscillations”
between the stateg, n') and |i, n), so over the
subspace of these two states we have
i _iét Xnn) . A . <Xnn >:| _ % —i ét—<1>—1r\n'—n\ H <h ) ]
ez[COS( > t +|Xn|’nsm > t anlyne(z 2 )sm > t
IP(t) - 2% h +i(ét—¢_’l\n'—n\) in xn',nt i§t|:_i Asin<xn',nt> + COG(&‘ t)] IP(O), 21
- >(n',n € 2 s 2 € Xn‘,n 2 2 ( )
whereX, .= (A2+403.)2 A=w —wy— (' —N)w,, and
¥ is given by
_ N\ — CT n'
w=c.lim+Culim =27 @
Cl,n
For the resonance conditiah= 0, Eq. (21) simplifies
to
. _i @il¢+3Inm=nl gin) .,
w(t) = cis(zn,nt ie'* 2 Siny ot w(0) . (23)
—i ezl ging,, t cosy ot

When the atom starts in an eigenstate, for each value of| theny << 1, but the converse is not necessarily true. If
n' —n, the phase factop + 7|n'~n|/2 can be chosen  the Lamb-Dicke criterion is satisfied, we can evaluate
arbitrarily for the first application oH,; however once (), to lowest order iy to obtain

chosen, it must be kept track of if subsequent applica-

tions of H, are performed on the same ion. For conve- (. = (., = Oy"" (n,/n1)*? (n' =n|nH™. (24)
nience, we can choose it to be zero, although in most of

what follows we will include a phase factor as a re- We will be primarily interested in three types of transi-
minder that we must keep track of it. In these expres- tions—the carrier f' = n), the first red sideband
sions, we assumeél,, , to be constant during a given (n' = n-1), and the first blue sideband'(= n+ 1)
application timet; this condition can be relaxed as whose Rabi frequencies, in the Lamb-Dicke limit, are
discussed in Sec. 4.3.2. A special case of interest isgiven from Eq. (24) by, yn*?Q2, and n(n + 1)*20
when the Lamb-Dicke criterion, or Lamb-Dicke limit, is  respectively.

satisfied. Here, the amplitude of the ion’s motion inthe  In general, the Lamb-Dicke limit is not rigorously
direction of the radiation is much less thaf2z which satisfied and higher order terms must be accounted for
corresponds to the conditiotW,orionK?2%| Winotion) ™ in the interaction [16,21,106]. As a simple example,
<< 1. This should not be confused with the less restric- suppose¥(0) = |1)|n) and we apply radiation at
tive condition where the Lamb-Dicke parameter is less the carrier frequencys(= 0). From Eq. (23), the wave-
than 1 () << 1); if the Lamb-Dicke criterion is satisfied, function evolves as
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P(t) = cosl2,t|L, n) —ie? sin,qt|t,n)y. (25) analogous; the difference is that the harmonic oscillator
associated with a single mode of the radiation field in

Forn= 0, we havedy o = Qexp(-n?2). The exponential cavity QED is replaced by that of the atom’s motion.
factor in this expression is the Debye-Waller factor The suggestion to realize this type of Hamiltonian (in
familiar from studies of x-ray scattering in solids; for a the context of cavity-QED) with a trapped ion was
discussion in the context of trapped atoms see Ref. [106] 0utlined in Refs. [2], [3], and [7]; however its use was
and Sec. 4.4.5. This factor indicates that the matrix alréady employed in the g-2 single electron experiments
element for absorption of a photon is reduced due to the ©f Dehmelt [108]. _
averaging of the electromagnetic wave (averaging of the ~ Driving transitions between the) and|1) states will
< factor in Eq. (14)) over the spread of the atom’s Create entangled states between the internal and
zero-point wavefunction. motional states since, in general, the Rabi frequency
As a second simple example, we consider will depend on the motional states (Eq. (18)). This

W(0) =|1,n) ands = + w, (first blue sideband). Equa- conditional dynamics,” where the dynamics of one
tion (23) implies system is conditioned on the state of another system,

provides the basis for quantum logic (Sec. 3.3).

In this section, we have assumed that the atom inter-
acts with an electromagnetic wave (Eq. (14)), which
will usually be a laser beam. However, the essential
At any timet # mm/(2()y.1,) (Man integer),¥is an  ppysics which gives rise to entanglement is that the
entangled state between the spin and motion. If the 4io1's internal levels are coupled to its motion through
excitation is left on continuously, the atom sinusoidally 5, inhomogeneous applied field. In the spin-1/2 analog,

oscillates between the state n) and|t, n+1). This  the magnetic momeng couples to a magnetic field
oscillation has been observed in Ref. [21] and is repro- g = B(z,1)g, yielding the Hamiltonian

duced in Fig. 2.

P(t) = cOH2y 41 nt|L, N) + € sinQ, .1 ot|1, N+ 1). (26)

When the Lamb-Dicke confinement criterion is met Hi = —-u,B(z, t) =
and when the radiation is tuned to the red sideband
(6 = — w,), we find (choosingp = — 7/2) oB 19%B
- B0+ | 24358 | 24| @8
H = 7#n0Q(S.a+Sa" . 27)

where, as abovey, « S, + S andz is the position
This Hamiltonian is the same as the “Jaynes-Cummings operator. The key term is the gradiesB/dz. From
Hamiltonian” [107] of cavity QED [43], which  the atom’s oscillatory motion in thedirection, it expe-
describes the coupling of a two-level atom to a single riences, inits rest frame, a modulation®ét frequency
mode of the (quantized) radiation field. The problem we w,. This oscillating component @& can then drive the
have described here, the coupling of a single two-level spin-flip transition. As a simple example, suppd&sés
atom to the atom’s (harmonic) motion is entirely static (but inhomogeneous along thdirection so that

[}
1 DU
s 5
y \ Al 0 0
1)

P,(t) YATR

s Y
¥ v .
0r ! I | ! 1
0 20 40 60 80 100
time (ps)

Fig. 2. Experimental plot of the probabiliti, (t) of finding a singl€’Be" ion in the|1 ) state after first preparing

it in the |1 ) |0) state and applying the first blue side band coupling (Eq. (16)§ for w,) for a timet. If there

were no decoherence in the systdPn(t) should be a perfect sinusoid as indicated in Eq. (26). Decoherence
causes the signal to decay as discussed in Sec. 3.2.1. The solid line is a fit to an exponentially decaying sinusoid
as indicated in Eq. (43). Each point represents an average of 4000 observations [21].
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dBldz # 0) andw, is equal to the resonance frequency modes of motion folL trapped ions. Here, as was as-
wo Of the internal state transition. In its reference frame, sumed by Cirac and Zoller [1], we consider that, on any
the atom experiences an oscillating field due to the given operation, the laser beam(s) interacts with only the
motion through the inhomogeneous field. Sirce w,, jthion; however, that ion will, in general, have compo-
this field resonantly drives transitions between the inter- nents of motion from all modes. In this case Eq. (14) for
nal states. Because this term is resonant, it is the domi-the jth ion becomes
nant term in Eq. (28), stl, = — ux(dB/9z)z = (S, +
S)(a+a" = S.a+Sa" where the last equality ne-
glects nonresonant terms. If the extent of the atom’s
motion is small enough that we need only consider the
first two terms on the right hand side of Eq. (28),is where we now assumie has some arbitrary direction.
given by the Janes-Cummings Hamiltonian (Eq. 27)). We will write the position operator of theh ion (which
This Hamiltonian is also obtained B is sinusoidally ~ represents the deviation from its equilibrium position)
time varying (frequencyw), we satisfy the resonance as
condition = w — wy = — w,, and we make the rotating-
wave approximation. This situation was realized in the X =uX+uL+j¥+ux+; 2, jE{1,2,...L}. (30)
classic electron g-2 experiments of Dehmelt, Van Dyck,
and coworkers to couple the spin and cyclotron motion
[108]. Higher-order sidebands are obtained by consider-
ing higher order terms in the expansion of Eq. (28).
One reason to use optical fields is that the field gradi-
ents (for examplegd/(dz)[e*] = ke can be large

Hi = A0(S; + S))[e " + hc],  (29)

We can express the in terms of normal mode coordi-
natesg, (kE{1, 2, ... 3}) through the matrixD}?, by
the following relations [109]

because of the smallness af Stated another way, 3L 3L

single-photon transitions between levels separated by rf  u, = Z DP o, Ok = Z DP Uy, Ok = uo(ax + &),
or microwave transitions, which are driven by plane k=1 p=1

waves, may not be of interest becalsesmall ¢ large) (32)

and expikz) = 1 which impliesd/(dz)[e*] = 0. This
makes interactions which couple the internal and exter-
nal states as in Egs. (27) and (28) negligibly small. This
is not a fundamental restriction because electrode struc- : L i

. . harmonic, which is a reasonably good assumption as
tures whose dimensions are small compared to the wave

) . “long as the amplitude of normal mode motion is small
length can be used to achieve much stronger gradients . . : .
. . ; compared to the ion spacing. (For two ions, the axial
than are achieved with plane waves. Microwave or rf

transitions can also be driven by using stimulated- stretch mode’s frequency is approximately equal to

Raman transitions as discussed in Sec. 2.3.3 below. sz(\/é— 9@./a;)’) wherea, is the (classical) amplitude

) . f one ion’s motion for this mode and, is the ion
second reason to use laser fields is they can be focuse ; : .
o . . spacing). Following the procedure of the last section,
so that, to a good approximation, they interact only with

L0 . we takeH, to be the Hamiltonian of thgth ion’s inter-
a selected ion in a collection.

The unitary transformations of Egs. (21) and (23) nal states and all of the motional (normal) modes

whereq is the operator for thkth normal mode and
anda/ are the lowering and raising operators for kil
mode. We have assumed that all normal modes are

form the basic operations upon which most of the aL
manipulations discussed in this paper are based. In this Ho = AwoS; + Y, Ay, (32)
section, they were used to describe transitions between k=1

two states labeled )|n) and|1)|n"). In what follows, we
will include other internal states of the atom which will wheref, = afa.. In the interaction picture (and making
take on different labels; however, the transitions the rotating wave approximation), we haw; =
between selected individual levels can still be described Ug H; Uy whereUy = exp(—i (Ho/%)t, yielding
by Egs. (21) and (23). Sequences of these basic opera-
tions can be used to construct more complicated opera- a
tions such as logic gates (Sec. 3.3). Hi =40 S, exp i, ni(a e +al e —i(dt — q,')j)}
k=1

2.3.2 State Dynamics Including Multiple Modes of

Motion +h.c., (33)

In what follows, we will generalize the interaction where ni=(k - XD{ + k- YD + k - 2D2") . (FoOr
with electromagnetic fields to consider motion in dll 3  the linear trap case, motion will be separable in the
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X, ¥, andz directions andy} will consist of one term.)
In this interaction picture, the wavefunction is given by

W= X > Clywm ©IM) [{nd),

Mz=1,1 {ng=0

(34)

where the coefficients are slowly varying afd} ) are

where ki, k, and w1, w, are the wavevectors and
frequencies of the two laser beams and the resonance
condition between internal states corresponds to
|wL1 — wi2| = wo. Even if wy is small compared to optical
frequencies|k; —k,| can correspond to the wavevector
of an optical frequency by choosing different directions
for k; andk,; this choice can thereby provide the desired

the normal mode eigenstates (we have used the shortstrong field gradients.

hand notation fik} = ny, n,, ..., N ). In analogy with
the previous section, we will be primarily interested in
a particular resonance condition, that is, whére=
wx(nk —ny) and 2 is sufficiently small that coupling to
other internal levels and motional modes can be ne-
glected. In this case, Egs. (21) and (23) apply to the
subspace of statgs);|nk) and |1 );|nk) if we make the
definitions

¥ = 1I’J = Cf,nk|l>i |nk> + Cj

TNk

[1)ni)

j
(éi'nlk]a A=6— (M —nax,

LNk

(35)

and _ »
Xglk'vnk = (A2 + 4(‘-(2r]1k',nk)2)1/2!

! L
Dien = QLo 3 i IT e D, N,
(36)

The last expression is the Rabi frequency for particular
values of the §i,-«}. More likely, the other mode states
(p# k) will correspond to a statistical distribution; this
is discussed in Sec. 4.4.5. For the application to
quantum logic (Sec. 3.3) the COM mode appears to be
a natural choice sincej, will be independent of. The
dependence ofy) on j for the other modes is not a

fundamental problem, but requires accurate bookkeep-

ing when addressing different ions. The valuegjotan
be obtained from the normal mode coefficients as
described by James [61].

2.3.3 Stimulated-Raman Transition

As indicated in the discussion following Eq. (28), we
want strong field gradients to couple the internal states
to the motion. If the internal state transition frequency
wo is small, one way we can achieve strong field gradi-
ents is by using two-photon stimulated-Raman transi-
tions [45, 48] through a third, optical level as indicated
in Fig. 3. In this case, as we outline below, the effective
Hamiltonian corresponding to that in Eq. (14) is
replaced by

H, = 40(S. + S)[ei[(kl—kz)'X—(le—“’LZ)t+(1’] +h.c], (37)
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In Fig. 3 we consider that a transition is driven
between statel ) and|t) through statg3) by stimu-
lated-Raman transitions using plane waves. Typically,
we consider coupling with electric dipole transitions in
which case

E = :(}iEi COS((i - X — it + d)i); |E{1, 2} . (38)

0

|1)

Fig. 3. Schematic diagram relevant to stimulated-Raman transitions
between internal statés) and|1). Two plane wave radiation fields
couple to a third stat¢8). The radiation fields are typically at laser
frequencies; they are characterized by frequencies and wavevectors
wij andk;, i €{1, 2}. The couplings are typically described by electric
dipole matrix elements. For simplicity, we assume field 1 only cou-
ples states! ) and|3); and field 2 only couples statés) and|3). In

this diagram, we do not show the additional energy level structure of
the 3L modes of motion.

For simplicity, we assume laser beam 1 has a cou-
pling only between intermediate sta8 and state ! ).
Similarly, laser beam 2 has a coupling only between
state|3) and state|t). Not shown in Fig. 3 are the
energy levels corresponding to the fiotional modes.
Laser detunings are indicated in the figure, so
w1— (w2 + 8) = wo, and we assumelg >> 6, {wi}
where {w} are the 3 mode frequencies. We will
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assume the Raman beams are focussed so that thejrequency between Raman beams can be precisely

interact only with thé th ion. In the Schidinger picture,
the wavefunction is written

> 2 Clim

Mz=1,1,3{n}=0

v

X eXp[—i ((DMZ + Nyw, + Nowo + ... n3|_w3|_)t]

X Mz)[{na}) (39)
Since 4 is large, staté3) can be adiabatically elimi-
nated in a theoretical treatment (see, for example,
Refs. [32], [48], [110], and Sec. 4.4.6.2). If we assume
the difference frequency is tuned to a particular reso-
nances = w«(Nk — i), we can neglect rapidly varying
terms and obtain

- _ il
C]T,nl,...ni(, g | A_ZR C:,nlﬂ..n'k, ...naL
- I‘Qg‘k s Nk Cj,nl, SN ...Nal,
. . 2 .
ij,nl, RN R B =1 % Ci,nl,“.nk, ...Nng.
—1 (@2 n) Clay e, (40)

where

Dy == FZ (v S0y, @)
where g = Ee(1|é-r|3)exp(-ig.)/(2%),
0. = Exe(1|& - r|3)exp(—ip)/(2%), ni = (Ak - XD} +
Ak - §D¢7 + Ak - 2D )q and Ak = k;—k,. The

terms|g?|/Ar and|g?|/ Ar are the optical Stark shifts of

levels|1) and|2) respectively. They can be eliminated
from Egs. (40) by including them in the definitions of
the energies for thél ) and|+) states or, equivalently,

tuning the Raman beam difference frequengyto

compensate for these shifts. If the Stark shifts are equal,

both the|i) and |t+) states are shifted by the same
amount, and there is no additional phase shift to be

accounted (Sec. 4.4.3). Equations (40) for stimulated-
Raman transition amplitudes are the same as for the Overall,

two-level system (Sec. 2.3.1) if we make the identifica-
tions ¢1—¢p, = ¢ and Ak = k. Although the

controlled using an acousto-optic modulator (AOM) to
generate the two beams from a single laser beam. If the
laser frequency fluctuations are much less th&n
phase errors on the overall Raman transitions can be
negligible [111]. Other advantages (and some disadvan-
tages) are noted below.

3. Quantum-State Manipulation
3.1 Laser Cooling to the Ground State of Motion

As a starting point for all of the quantum-state manip-
ulations described below, we will need to initialize the
ion(s) in known pure states. Using standard optical
pumping techniques [112], we can prepare the ions in
the|! ) internal state. Laser cooling in the resolved side-
band limit [106, 113 ] can generate tfre= 0) motional
state with reasonable efficiency [44, 45]. This type of
laser cooling is usually preceded by a stage of
“Doppler” laser cooling [106,114,115] which cools the
ion to an equivalent temperature of about 1 mK. For
Doppler cooling, we havéi) = 1, so an additional stage
of cooling is required.

Resolved sideband laser cooling for a single, harmon-
ically-bound atom can be explained as follows: For sim-
plicity, we assume the atom is confined by a 1-D
harmonic well of vibration frequencw,. We use an
optical transition whose radiative linewidtfq is rela-
tively narrow, yaq << w, (Doppler laser cooling applies
whenvy.g = w,). If a laser beam (frequenay) is inci-
dent along the direction of the atomic motion, the bound
atom’s absorption spectrum is composed of a “carrier”
at frequencyw, and resolved frequency-modulation
sidebands that are spaced by, that is, at frequencies
wo + (N'—N)w, (Sec. 2.3). These sidebands in the spec-
trum are generated from the Doppler effect (like vibra-
tional substructure in a molecular optical spectrum).
Laser cooling can occur if the laser is tuned to a lower
(red) sideband, for example, @at= wy, — w,. In this case,
photons of energy (w, — w,) are absorbed, and sponta-
neously emitted photons of average enerfp,—R
return the atom to its initial internal state, whedRe=
(7K)*/2m = %wr is the photon recoil energy of the atom.
for each scattering event, this reduces
the atom’s kinetic energy bjw, if w,>> wg, a condition
which is satisfied for ions in strong traps. Since

experiments can benefit from use of stimulated-Raman o /w, = n? wheren is the Lamb-Dicke parameter, this

transitions, for simplicity, we will assume single photon
transitions below except where noted.
Another advantage of using stimulated-Raman

simple form of sideband cooling requires that the Lamb-
Dicke parameter be small. For example 'Be", if the
recoil corresponds to spontaneous emission from the

transitions on low frequency transitions, as opposed to 313 nm 2 ?P;, — 2s2S;,, transition (typically used for

single-photon optical transitions, is the difference
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laser cooling), wg/27r = 230 kHz. This is to be
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compared to trap oscillation frequencies in some laser- high efficiency. Steps (a) and (b) are repeated until the
cooling experiments of around 10 MHz [45]. Cooling atom is optically pumped into tHe)| 0) state. When this
proceeds until the atom’s mean vibrational quantum condition is reached, neither step (a) or (b) is active and
number in the harmonic well is given by the process stops. In this simple discussion, we have
(Pmin = (y/2w,)* << 1 [106,115,116]. assumed the transitiop )|n) - |1)/n —1) is accom-

In experiments, we find it convenient to use two- plished with 100% efficiency. However since, in
photon stimulated Raman transitions for sideband cool- general, the atom doesn't start in a given motional state
ing [45, 117], but the basic idea for, and limits to, |n), and since the Rabi frequencies (Eg. (18)) depend on
cooling are essentially the same as for single-photon n, this process is not 100 % efficient; nevertheless, the
transitions. The steps required for sideband laser cooling atom will still be pumped to théi )|0) state. The only
using stimulated-Raman transitions are illustrated in danger is having the stimulated-Raman intensities
Fig. 4. This figure is similar to Fig. 3, except we include and pulse time t adjusted so that for a particular
the quantum states of the harmonic oscillator for one (2, t = mar (m an integer), in which case the atom is
mode of motion. Part (a) of this figure shows how, when “trapped” in the|l )|n) level. This is avoided by varying
the ion starts in thdi) internal state, a stimulated- the laser beam intensities from pulse to pulse; one par-
Raman transition tuned to the first red sideband ticular strategy is described in Ref. [17].

[1)[n) - |1)|n—1) reduces the motional energy by So far, laser cooling to thén = 0) state has been
%iw,. In part (b), the atom is reset to the) internal state achieved only with single ions [44, 45]; therefore an
by a spontaneous-Raman transition from a third laser immediate goal of future work is to laser cool a collec-
beam tuned to thgr) - |3) transition. We assume that tion of ions (or, at least one mode of the collection) to the
there is a reasonable branching ratio from st&eto zero-point state. Cooling of any of thd. 3nodes of
state|l ), so that even if the atom decays back to lg¢vel motion of a collection of ions should, in principle, work
after being excited to leveB), after a few scattering  the same as cooling of a single ion. To cool a particular
events, the atom decays to stpte If wr << w;,, step (b) mode, we tune the cooling radiation to its first lower
accomplishes the transitiony|n — 1) - |1 )|n — 1) with sideband. If we want to cool all modes, sideband cooling

| 3)

— [3)

3
2
1
n=0
) :
e
(a) stimulated Raman (An = -1) (b) spontaneous Raman (An = 0)

Fig. 4. Schematic diagram relevant to laser cooling using stimulated-Raman transitions. In (a), we
show that whenw ; — @2 = wo — ,, Stimulated-Raman transitions can accomplish the transtipn

[n) - |1)|n — D). In the figure, the transition fan = 2 is shown. In (b), spontaneous-Raman transtions,
accomplished with radiation tuned to the) — |3) transition, pumps the atom back to the state,
thereby realizing the transitioft) [n —1) - |1) |n —1). When atomic recoil can be neglected, one
application of steps (a) and (b) reduces the atom’s motional energwhynlessn = 0, in which case

the atom is in it's motional ground state.
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must be cycled through alL3modes more than once, or
applied to all 3 modes at once, since recoil will heat all
modes. For the COM mode, the cooling is essentially
the same as cooling a single particle of masg how-
ever, the recoil energy upon re-emission is distributed
over the 3 -1 other modes. Other methods to prepare
atoms in thén = 0) state are discussed in Refs. [5], [10],
[12]. Morigi et al. [118] show that it is not necessary to
satisfy the conditionwr << w, (n << 1) to achieve
cooling ton = 0.

3.2 Generation of Nonclassical States of Motion of
A Single lon

We begin with a discussion of the generation of non-
classical motional states of a single trapped ion. This

between thel ) and?Ps,(F = 3, M = 3) energy levels.
Because the only decay channel of ti,(F = 3,

M = 3) state is back to thg ) state, this is a cycling
transition, and detection efficiency is near 1 (Sec. 2.2.1).
The experiment is repeated many times for each value of
7, and for a range of values. We find

P =2 (143 Premcos@ i), (@2
n=0

whereP, = |C, ,[?is the probability of finding the ion in
state|! )|n). The phenomeniogical decay constantg,

are introduced to model decoherence that occurs during
the application of the blue sideband. The measured sig-
nal P,(7) can be inverted (Fourier cosine transform),

seems appropriate because the other applicationsallowing the extraction of the probability distribution of

discussed in this paper incorporate similar techniques.
Much of the original interest in nonclassical states
of mechanical motion grew out of the desire to make
sensitive detectors of gravitational waves using (macro-
scopic) mechanical resonators [119, 120]. For example,
parametric amplification of mechanical harmonic oscil-

lations can lead to guantum mechanical squeezing of the

oscillation. In the meantime, nonclassical states of the
radiation field were observed [43]. The close relation-
ship of these two problems was pointed out above: in
quantum opticsiH,s of Eq. (8) represents a single mode
of the radiation field, andH, of Eq. (14) represents the
coupling between the (quantized) field and atom. The

nonclassical states of motion considered here, such as
squeezed states, are the direct analogs of the nonclassi-
cal photon states in quantum optics. They appear to be

of intrinsic interest because, as in cavity QED, they
allow the rather complicated dynamics of the simple
quantum system [described by the Hamiltonian in

vibrational state occupatioR,.

(F,Mr)
Ay \
E— (1,0)
(1,1) f
Internal state
energy
(2,2)
@1 v
(2,0) —
@1 ——aux
(2,-2)

Fig.5. Hyperfine levels of the 285, ground state oiBe' in a weak

Eq. (27)] to be studied. Before discussing some methods magnetic field (not to scale). The energy levels are designated by
to create nonclassical states, we consider one methodhorizontal lines. Above the lines, the levels are represented by atomic

for analyzing them.
3.2.1 Population Analysis of Motional States

As described below in this section, from the)|0)
state, it is possible to coherently create states of the form
[1) Wrotion Where Wyion is given by Eg. (10). One way
we can analyze the motional state created is as follows
[21]: To the statgl) Wmoion We apply radiation on the
first blue sideband( =n + 1 in Eq. (23)) for a timer.

We then measure the probabil®y(7) that the ion is in
the |1 ) internal state. In the experiments of Meekhof et
al. [21], the internal statél) is the Z2S, (F = 2,
Mg = 2) state ofBe', and|t) corresponds to thes2S,,
(1,1) state as shown in Fig. 5. The) state is detected
by applying nearly resonant-polarized laser radiation
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physics labelsK, Mg) whereF is the total angular momentum (elec-
tron plus nuclear angular momentum) avig is the projection of the
angular momentum along the magnetic field axis. The separation of
Zeeman substates in the different F manifolds is approximately equal
to 0.7 X 10'°ByHz whereB, is expressed is teslas. The separation of
theF = 1 andF = 2 manifolds is approximately 1.25 GHz B = 0.

For simplicity of notation, in most of the paper we make the identifi-
cations|[F =2, Mg =2) = [1), |1, D = 1), ]2, 0) = |aux).

3.2.2 Fock States

In Fig. 2, we show an experimental plot [21] of the
probability P, (7) of finding the ion in the|t) internal
state after first preparing it in
the |1)|0) state, and applying the first blue sideband
for a time . From Eq. (23), we would expect
P.(7) = cog() or; however, we clearly see the effects



Volume 103, Number 3, May—June 1998
Journal of Research of the National Institute of Standards and dEgyn

of some decoherence process which we can represenSchrainger’'s equation yields for the coefficients of the
adequately by the first term in Eq. (42) wavefunction

P.(7) :% <1 + e‘VOTcosml,oT> : (43) Co= VNG = iV +1C.s, (45)
where(, = —qEze'%/(2%). Equivalently, in the inter-
action picture for the motion, the Hamiltonian of Eq.
(44) leads to the evolution operator

In this experiment, we think the decoherence is not
simply caused by fundamental (radiative) decoherence
but has contributions from fluctuations in laser power
(which cause fluctuations ifi2; o), fluctuations in trap U(t) = el@a’-@ral —

. . ’ ; . t) = el wa = D ((ht) , 46
drive voltageV, (which cause fluctuations im,), and ® (42:0) (46)

fluctuations inewo. [121].

Neglecting for the moment the effects of decoher- ~ \ye can achieve the same evolution if we superim-
ence, we see that for times= mmu/(2(2;, ¢ (m an in- pose two traveling wave fields which drive stimulated-
teger), the ion is in a nonentangled state)|0) or Raman transitions between differeint) levels of the

|1)]1)). Therefore, if the ion starts in the)| 0) state, we  same internal state, and we make the difference fre-
can prepare the atom in the)|1) state (thdn=1) Fock  quency between the Raman beams equal to the trap
state) by applying the blue sideband for a time qscillation frequency. For example, assume the ion is
7= m/2(},0, a so called Rabir pulse. For other times,  gypjected to two lasers fields given by Eq. (38), where
the ion is in an entangled state given by Eq. (26). This ,, . _ ¢, =~ @, << w, The dynamics can be obtained
operation and the analogous operation on the first red fo|jowing the analysis in Sec. 2.3.3, except we replace
sideband will form key elements of quantum logic using |evel|1)|n) (|1)|n')) with level|g)|n) (|g)|n') where|g)
trapped ions. can be any ground state which has a matrix element

We can generate higherFock states of motion by a  yith level |3) . For the coefficients of Eq. (10), we find
sequence of similar operations. For example, to generate

the|1)|2) state, we start in thel )|0) state, apply ar . 2 4 g2 - '

pulse on the first blue sideband, followed byrgulse G = '[ w Cn— Z (n|Qexplin(ae™

on the first red sideband. This leads to the sequence "o

[1)]0y - [1)]1) - |1)]2) (neglecting overall phase fac- _ .

tors). In a similar fashion, Fock states ugne 16) have +ae”) —i(on - wt] + h-C-|n'>Cn} , (47)

been created [21]. Other methods for creating Fock

states have been suggested in Refs. [5], [8], [12], and \here 0 = —giG/Ar, G = QEXQ|E; - T |3) exp(=idh)/

[13]. (2%), 1= (ki—Ks) - 220, and A = wag — wa. The first

term on the right side of Eq. (47) corresponds to a Stark

3.2.3 Coherent States shift of levelg; this Stark shift can be absorbed into the
We can also create coherent states of motion; thesedéfinition of the ground state energy (see, for example,

states are closest in character to classical states of mo-Sec. 4.4.6.2). If this is done, the same equations for the

tion. This can be accomplished if the atom is subjected Cn [Eds. (47)] are obtained from the Hamiltonian (in the

to a spatially uniform classical force, or any force Oscillator interaction picture)

derived from a potential £(t) - z, wheref is a real

c-number vector. For an ion which starts in me= 0) H; = ﬁ_()exp<i [n(ae’ + ) — (wyy — sz)t]>
state, this force creates a displacement leading to a co-
herent statéa) defined bya |a) = a|a) wherea is a +h.c., (48)

complex humber [121]. This classical force can be real-
ized by applying an electric field which oscillates at  |n the Lamb-Dicke limit, if we choose the resonance
frequencyw,. For example, if we apply a (classical) condition wherew ; — w» = w, and assume?2 << w;,
electric fieldE (t) = ZE, sin(wt —¢), the corresponding Egs. (47) are the same as Egs. (45) whee= n(2.
interaction Hamiltonian (in the interaction frame for the  Therefore, in the Lamb-Dicke limit, the applied laser
motion) is given by fields act like a uniform oscillating electric field which
oscillates at frequencw,; — w . This can be under-
H, = — gEz(ae™" + ae')) sin(wt —¢) .  (44) stood if we consider that the two laser fields give rise
to an optical dipole force which is modulated in such
If we express the motional wavefunction as in Eq. (10), a way to resonantly excite the ion motion. To see
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this, assume for simplicity that, in Eq. (38, = E, = E,,

& = & = &, andk, —k, = Z|AK|. It is useful to write the
total electric field as

E = E, + E, = 22E(t)

X cos(ky + ko) - 22 —wt + ) , (49)

where@ = (w1 + w2)/2, & = (1 + ¢2)/2, andE(t) is a
slowly varying function

Ak
2

E(t) = Eoco “’Ll;““t + ¢1£¢2> . (50)
On a time scale long compared tadk/but short com-
pared to 1/ 1 — w.2), the atom experiences a nonreso-
nant electric field of amplitudde(t) which is nearly
constant in time. If we consider coupling of this electric
field between the ground state and s{abfor example,
see Sec. 4.4.6.2), this electric field leads to a spatially-
dependent Stark shift of the ground state equal to
AEsin = — 4%]9(z,1)[1 Az where

W 1 — W2

2

S, o, ot

t+ 2

9.0 =[ol* cos(

qEx(g|é - r|3)e*

> (51)

g=

This Stark shift leads to an optical dipole force
122-124]F, = — 3(AEswa)/dz. On a longer time scale,
this dipole force is modulated at frequenay; — w.»
which can resonantly excite the ion’s motion when
(w11 — w2) = w,. This leads to Eqgs. (45). Whda and
k, are both directed along theaxis (but in opposite
directions), the dipole force potential can bewed as
a “moving standing wave” in thedirection which slips
over the ion and whose accompanying dipole force reso-
nantly excites the ion’'s motion [125]. Both methods
have been used to excite coherent states in Refs. [21] an

[47]. Other methods for generating coherent states are

suggested in Refs. [4] and [48].

In the experiment of Ref. [47], a dipole force oscillat-
ing at the ion oscillation frequency was created with
particular polarizations of the laser fields. This led to a
force which was dependent on the ion’s internal state,
enabling the generation of entangled “Satinger-cat”
states of the form = (|1)|a€?) + |1)|ae)/V2.

3.2.4 Other Nonclassical States

When .1 — wi12) = 2w, a similar analysis shows that

section has a component which acts like a parametric
excitation of the ion’s harmonic well at frequencw 2
[21]. This can produce quantum mechanical squeezing
of the ion’s motion. Squeezing could also be achieved by
amplitude modulatindJ, at frequency @, by a nonadi-
abatic change in the trap spring constant [48], or
through a combination of standing and traveling wave
laser fields [4]. A quantum mechanical treatment of the
motion in an rf trap shows the effects of squeezing from
the applied rf trapping fields [34, 35, 91]. More general
nonlinear effects in the interaction can lead to higher
“nonlinear coherent states” as discussed by de Matos
Filho and Vogel [126].

Other methods for generation of Sc¢tnager-cat like
states in ions are suggested in Refs. [8], [19], [29], [31],
[33], [36], and [38]. Additional nonclassical states are
investigated theoretically by Gou and Knight [23], Gou
et al. [37], and Gerry et al. [37]. Schemes which can
generate arbitrary states of the single-mode photon field
[127,128] can also be applied directly to generate
arbitrary motional states of a trapped atom and perform
guantum measurements of an arbitrary motional observ-
able [129]. A scheme which can generate arbitrary
entanglement between the internal and motional levels
of a trapped ion is discussed by Kneer and Law [130].

The procedure for analyzing motional states outlined
in Sec. 3.2.1 yields only the populations of the various
motional states and not the coherences. Coherences
must be verified separately [21, 47]. The most complete
characterization is achieved with a complete state
reconstruction or tomographic technique; a description
of how this has been implemented to measure the
density matrix or Wigner function for trapped atoms is
given in Leibfried et al. [131, 132]. These experiments
represent the first measurement of negative values of the
Wigner function in position-momentum space. Wigner
functions for free atoms have also been recently deter-
mined experimentally by Kurtsiefer et al. [133]. Other
methods for trapped atoms have been suggested in Refs.

0[15], [22], [24], [27], [34], and [35]. These techniques

can also be extended to characterize entangled motional
states [39] and states which are entangled between the
motional and internal states.

3.3  Quantum Logic

Significant attention has been given recently to the
possibility of quantum computation. Although this field
is about 15 years old [134—-138], interest has intensified
because of the discovery of algorithms, notably for
prime factorization [139-142], which could provide
dramatic speedup over conventional computers.

the moving standing wave potential discussed in the last Quantum computation may also find other applications
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[142—-152]. Schemes for implementing quantum compu-
tation have been proposed by Teich [153], Lloyd [143,
144], Berman et al. [154], DiVincenzo [155, 156], Cirac
and Zoller [1], Barenco et al. [157], Sleator and
Weinfurter [158], Pellizzari et al. [159], Domokos et al.
[160, 161] Turchette et al. [162], Lange et al. [163],
Torméa and Stenholm [164], Gershenfeld and Chuang
[165], Cory et al. [166], Privman et al. [167], Loss and
DiVincenzo [168], and Bocko et al. [169]. In this paper,
we focus on a scheme suggested by Cirac and Zoller [1],

target bit remains unchanged; 4f = 1, the target bit
flips.

A spectroscopy experiment on any four-level quan-
tum system, where the level spacings are unequal, shows
this type of logic structure if we make the appropriate
labeling of the levels. For example, we could label these
four levels as in Eqg. (53). If we tune radiation to the
|1, 0 - |1, 1) resonance frequency and adjust its dura-
tion to make arr pulse, we realize the logic of Eq. (53).
Similarly, an eight-level qguantum system with unequal

which uses trapped ions. Since, in general, any quantumlevel spacings realizes a Toffoli gate [142], where the

computation can be composed of a series of single-bit
rotations and two-bit controlled-not operations
[140,155,156,170,171], we will focus our attention on
these operations.

In the parlance of quantum computation, we say that
two internal states of an ion can form a quantum bit or
“qubit” whose levels are labelé@®) and|1) or, equiva-
lently, |1) and|t). Single-bit rotations on iof can be
characterized by the transformation (Eq. (23)rfor n)

R(6,¢) (Cj[t) + Cij 1))

cos@/2)

— [ CT]
T He'*sin(6/2)

— e”"’sin((?/Z)] [
X
C,

cos/2) ] - (52)

In the spin-1/2 model, this transformation is realized by
application of a magnetic field,/2 which rotates at
frequency wy, and in the same sense as which is
applied slong the directiokcosp —ysing in the rotat-
ing frame. This is equivalent to application of the field
BiXcoskz —wt + ¢) in Eqg. (14). In this expression,
0 = 20,,t is the angle of rotation about the axis of
this field. For6 = 7 and ¢ = 0, R(0, ¢) is a logical
“not” operation (within an overall phase factor).
R(w/2, —7I2) (plus a rotation about) is essentially a
Hadamard transform.

A fundamental two-bit gate is a controlled-not (CN)
gate [142,155,156,157]. This provides the transforma-
tion

lew) [&2) — |e) |er®ss) (53)

where &, £€{0,1} and @ is additon modulo 2.
Although Eq. (53) is written in terms of eigenstates, the
transformation is assumed to apply to arbitrary superpo-
sitions of stateges)|sy). In this expressiong; is the
called the control bit and, is the target bit. Ifs; = 0, the
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flip of a third bit is conditioned upon the first two bits
being 1’'s—and so on (see Sec. 5.2). This basic idea can
be applied to molecules composed of many interacting
spins such as in the proposals of Gershenfeld and
Chuang [165] and Cory et al. [166]. For quantum
computation to be most useful, however, we need to
perform a series of logic operations between an arbi-
trary number of qubits in a system which can be scaled
to large numbers, such as the scheme of Cirac and Zoller
[1].

Another type of fundamental two-bit gate is a phase
gate, which could take the form

len |&2) — €91%2|ep)|ey)

(54)

This type of conditional dynamics has been demon-
strated in the context of cavity QED [162,172] and for
a trapped ion [17] (step (1b) below).

The Cirac/Zoller scheme assumes that an array of
ions are confined in a common ion trap. The ions
are held apart from one another by mutual Coulomb
repulsion as shown, for example, in Fig. 1. They can be
individually addressed by focusing laser beams on the
selected ion. lon motion can be described in terms of
normal modes of oscillation which astaredby all of
the ions; a particularly useful mode might be the COM
axial mode. When quantized, this mode can form the
“bus qubit” through which all gate operations are per-
formed. We first describe how logic is accomplished
between this COM mode qubit and the internal-state
qubit of a single trapped ion. In particular, the transfor-
mation in Eq. (53) has been realized for a single trapped
ion [17]. In that experiment, performed on a trapped
°Be' ion, the control bit was the quantized state of one
mode of the ion’s motion (labeled the mode). If
the motional state wal; = 0), this was taken to be a
|1 = O) state; if the motional state wais = 1), this was
taken to be de; = 1) state. The target states were two
ground-hyperfine states of the ion, tlie= 2, Mg = 2)
and [F = 1, Mg = 1) states, labeled.) and |1)
(Fig. 5), with the identification heré¢l) < |s;, = 0)
and|t) = |e = 1). Transitions between levels were
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produced using two laser beams to realize stimulated- (2)
Raman transitions. The wavevector differetkge— k,

was chosen to be aligned along thdirection. The CN
operation between these states was realized by applying
three pulses in succession:

(1a) A /2 pulse (X = w/4 in Eq. (25), where we
assumellyo = ()11 = ) is applied on the carrier
transition. For a certain choice of initial phase,
this corresponds to the operatvi’? (w/2) of
Cirac and Zoller [1].

(1b) A 27 pulse is applied on the first blue sideband

The elimination of an auxiliary ground state level

removes “spectator” internal atomic levels, which

can act as potential “leaks” from the two levels

spanned by the quantum bits (assuming negligible
population in excited electronic metastable

states). This feature may be important to the
success of quantum error-correction schemes
[142, 175-187] which can be degraded when
leaks to spectator states are present [188].
(Specific error-correction schemes for ions are
suggested in Refs. [182] and [187].)

transition between levelst) and an auxiliar (3) The elimination of the need for an auxiliary level
level [auy in the ion (thelF = 2, M¢ = 0) level iny can dramatically reduce the sensitivity of a CN
°Be"; see Fig. 5). This operato} isFanangousto the q”a”t“”f' logic gate to exter_nal magnetic “?'ds
ope;atorur%l of Cirac and Zoller [1]. This opera- quctuat|0n§. It is generally mposs@lt_a to find
tion provides the “conditional dynamics” for the three atomic ground states whose splittings are all
CN operation. It changes the sign of the) magnetic field insensitive to first order. However,
n=1) compoﬁent of the wavefunction but leaves f(_)r_ lons possessing hyperfine structure, the tran-
the sign of the1 ) |n = 0y component of the wave- sition frequency between two levels can be made
function unchanged: that is, the sign change is magnetic field independent to first order at partic-
conditioned on Whet,her or I"IO'[ the ion is in the ular values of an applied magnetic field (see Sec.
[n =0) or |n = 1) motional state. Therefore, this 4.2.2). . N

step is the phase gate of Eq. (54) with= 7, (4) Fln_ally, a reduction of Iaser_pulses simplifies the
where we make the identifications(= 0,1) — tuning procedure and may increase the speed of
(n=0,1) and & = 0.1) = (internal sltate'=1 . the gate. For example, the gate realized in Ref.

- Y 2— Y, And y . . .

(1c) A 7/2 pulse is applied to the spin carrier transi- [17] required the accurate setting of the phase e}nd
tion with a 180 phase shift relative to step (a). frequency of three Ias_e r pulses, and the d_urgtlon
This corresponds to the operatg(—m/2) of of the gate was dominated by the transit time
Cirac and Zoller [1] through the auxiliary level.

Steps (1a) and (1c) can be regarded as two resonantT he CN quantum logic g.ate can t_)g realiz_ed with a single
pulses (of opposite phase) in the Ramsey separated-fielopmse tuned to the carrier transition which couples the

method of spectroscopy [173]. If step (1b) is active st

(thereby changing the sign of the) [n = 1) component
of the wavefunction), then a state change (spin flip) is
induced by the Ramsey fields. If step (1b) is inactive,
step (1c) reverses the effect of step (1a).

Instead of the three pulses (1a — 1c above), a simpler
CN gate scheme between an ion’s internal and motional

ategn)|1) and|n) |t ) with Rabi frequency2,, [see
Egs. (18), (36), and (41)]. Considering only a single
mode of motion,

Onn = Q(n]€7@*Dn)| = Q6™ L, (0P, (55)

states can be achieved with a single laser pulse, whilewhere%,(n? = L% (%% (Eg. (18)). Specializing to the

eliminating the requirement of the auxiliary internal |n

= 0) and|n = 1) vibrational levels relevant to quantum

electronic level [174], as described below. These simpli- logic, we have

fications can be important for several reasons:

(1) Several popular ion candidates, includfiglg®,
40Ca+, 885r+, 1388a+, 174Yb+, 172Yb+, and198Hg+’ dO
not have a third electronic ground state available
for the auxiliary level. These ions have zero nu-
clear spin with only two Zeeman ground states
(M, = 1,1). Although excited optical metastable
states may be suitable for auxiliary levels in some
of these ion species, use of such states places
stringent requirements on the frequency stability
of the exciting optical field to preserve coherence
(see Sec. 4.4.3).

se
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QO,O = Qe—nZIZ,

011= 01 -n?) (56)

The CN gate can be achieved in a single pulse by
ttingn so thatQ, 1/ Qo 0= (2k + 1)/2m, with k andm

positive integers satisfyingn > k = 0. Setting(2; /(2o
2m/(2k + 1) will also work, with the roles of th¢0)
and|1) motional states switched in Eq. (53). By driving
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the carrier transition for a durationr such that
017 = (kK + 1/2)m, or a “m-pulse” (mod Zr) on the
[n) = |1) component, this force€,,r = mar. Thus the
states|!)|1) and |1)|1) are swapped, while the states
|1)[0y and |1)|0) remain unaffected. The net unitary
transformation, in the {0, 10, 1 1, 1 1} basis is

1 0 0 0
0 1 0 0

0 0 0 eit(— 1)km

0 0 iei¥(-1)km 0 (57)

This transformation is equivalent to the reduced CN of
Eq. (53), apart from phase factors which can be elimi-

nated by the appropriate settings of the phase of subse-

quent logic operations [157].

The “magic” values of the Lamb-Dicke parameter
which allow the above transformation satisfy
$(m) =1 -n%= (2 + 1)/2m, and are tabulated in
Table | of Ref. [174] for the first few values. [For rf
(Paul) trap confinement along the COM motional mode,
the Rabi frequencies of Eqgs. (55) and (56) must be
altered to include effects from the micromotion at the rf
drive frequency(2;. In the pseudopotential approxima-
tion (w << (), this correction amounts to replacing the
Lamb-Dicke parametem in this paper byn[l - w/
(2V'202)], as pointed out by Bardroff et al. [34, 35].
However, there is no correction if the COM motional
mode is confined by static fields (such as the axial COM
mode of a linear trap.)] It may be desirable for the
reduced CN gate to employ the) = |2) or |n) = | 3) state
instead of theln) = |1) state for error-correction of

motional state decoherence [182]. In these cases, the

“magic” Lamb-Dicke parameters satisfyi’s(n?) =
1-2n% + n*2 = (X + 1)/2m for quantum logic with
[n) =1]0) and|2), or #x(n?) =1 -371%+ 3n*%2 -1%6 =
(2k + 1)/2m for quantum logic withn) = |0) and|3).

This scheme places a more stringent requirement on
the accuracy of2 and», roughly by a factor ofm. In
the two-photon Raman configuration (Sec. 2.3.3), the
Lamb-Dicke parameten = |4k |z can be controlled by
both the frequency of the trap (appearingzihand by
the geometrical wavevector differencgk of the
two Raman beams. Accurate setting of the Lamb-Dicke
parameter should therefore not be difficult. Both
CN-gate schemes are sensitive to excitation in other
modes as discussed in Sec. 4.4.5.

The CN operations between a motional and internal
state qubit described above can be incorporated to
provide an overall CN operation between two ions in a

277

collection ofL ions. Here, we choose the particular ion
oscillator mode to be a COM mode_of the collection.
Specifically, to realize a controlled-n6} ; between two
ions ¢ = control bitt = target bit), we first assume the
COM mode is prepared in the zero-point state. The
initial state of the system is therefore given by

v=(3 3
Mi=1,t Mpa=1,1

2 CMlxMZx---ML

ML=,

% (MM . .|ML)L> 0) . (58)

éc,t can be accomplished with the following steps:

(2a) Apply am-pulse on the red sideband of ian
This accomplishes the mapping |t ). +
B11)9]0) - |1 )(a|O) + B|1), and corresponds to
the operatot) 1’ of Cirac and Zoller [1]. We note
that in the NIST experiments [17], we prepare the
state @|1) + B|1))|0) from the| 1 )I0) state using
the carrier transition. We can then implement the
mapping ¢ [1) + B[ 1))[0) — [1)(«|0) + B[ 1)) by
applying am-pulse on the red sideband. This is
the “keyboard” operation for preparation of arbi-
trary motional input states for the CN gate of
steps la— 1c above. Analogous mapping of inter-
nal state superpositions to motional state super-
positions are reported in Refs. [47], [131], and
[132].

Apply the CN operation (steps 1la — 1c or, the
single carrier pulse described above) between the
COM motion and ion t.

(2c) Apply the inverse of step (2a).

(2b)

Overall,éc,t provides the unitary transformation (in the

{000 14 16 [1)e 4 ) | 1)e 1)} basis)

(o NNl
[eoNeN e}
= OOO
O, OO
|

(59)

which is the desired logic of Eq. (53). Effectivel
works by mapping the internal state of ion c onto the

COM motion, performing a CN between the motion and

ion t, and then mapping the COM state back onto ion c.

The resulting CN between ions ¢ and t is the same as the

CN described by Cirac and Zoller [1], because the oper-

ationsV*3(#) and U}’ commute.
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A third possibility, which also uses only one internal gates. Fot. = 100, a significant improvement in perfor-
state transition on each ion, is the following. We employ mance in atomic clocks could be expected.
two nondegenerate motional modes, which we label Inspectroscopy experiments bratoms, in which the
here as 1 and 2. These might be the COM modes in two signal relies on detecting changes in atomic populations,
different directions. We first map the internal state infor- we can view the problem in the following way using the
mation from two qubitsj and k onto the separate spin-1/2 analog for two-level atoms. The total angular
motional modes (which are both initially in the = 0), c
[n = 0), zero-point state). This can be accomplished as —t
described in step (2a) above. We then apply a condi- is the spin of theth atom. The basic task is to measure
tional phase gate (Eq. (54) witth = 7r) to the two wy, the frequency of transitions between thé¢ and|t)
motional modes. This could be accomplished by driving states Eq. (11). We first prepare an initial state for the
a 2m transition on a second order red sideband, at spins. We assume spectroscopy is performed by apply-
frequencywo — w1 — w,, ON a particular (extra) ion “g”  ing (classical) fields of frequencwg for a time Tg
which is initially in the|: ), state. This ion is not used according to the method of separated fields by Ramsey
to store information; it is only used for this one particu- [173]. The same field is applied to all atoms. After
lar purpose. This would be followed by operations applying these fields, we measure the final state popula-
which map the motional states back onto the internal tions; that is, we detect, for example, the number of
states of iong andk (like step (2c) above). Overall, this atomsN, in the |1 ) state. In the spin-1/2 analog, this
provides a phase gate (Eq. (54) with = 77) between is equivalent to measuring the operatdy, since
ionsj andk. To make a CN gate between iopandk, N, = JI-J, wherefis the identity operator. We assume
we need to precede the above operations with/2 the internal states can be detected with 100 % efficiency
pulse on the internal state of igr{or k) and follow the (Sec. 2.2.1). If all sources of technical noise are elimi-
above operations with &/2 pulse on the internal state nated, the signal-to-noise ratio (for repeated measure-
of ionj (or k). ments) is fundamentally limited by the quantum fluctua-

In this section, we have assumed that each ion can betions in the number of atoms which are observed to be
addressed independently. Also, since very many suchin the|i) state. These fluctuations can be called quan-
operations will be desired for a quantum computer, the tum projection noise [100]. Spectroscopy is typically
accuracy or fidelity of these operations is of crucial performed orlL initially nonentangled atoms (for exam-
importance. These issues are confronted in Sec. 4. Asple, ¥(t = 0) = ITi=,|L ). With the application of the
noted in Sec. 2.3, in each separate operation involved in Ramsey fields, the atoms remain nonentangled. For this
a quantum computation, such as application of the red case, the imprecision in a determination of the fre-
sideband in step 2(a) to ion a definite phase of the  quency of the transition is limited by projection noise to
applied fields is assumed. This phase for each ion can be(Aw)meas= 1/(LTr7)"? wheret >> Ty is the total averag-
chosen arbitrarily for the first operation, but upon ing time [100]. If the atoms can be initially prepared in
successive applications of the same operation to theparticular entangled states, it is possible to achieve
same ion, it must be held fixed, or at least be known, (Aw)mess< 1/(LTr7)"2 Initial theoretical investigations
relative to the initial phase. An exception to this is appli- for ions [3, 9] examined the use of correlated states
cation of 27-pulses as in step 1(b) where the phase of which could achieve Aw)mess < 1/(LTz7)¥? when the
the fields does not enter into the final result of the population {,) was measured. These states are

momentum of the system is given By= >, S whereS

operation. analogous to those previously considered for interferom-
eters [192, 193]. More recent theoretical investigations
3.4 Entangled States for Spectroscopy [194] consider the initial state to be one where, after the

first Ramsey pulse, the internal state is the maximally
A collection of atoms, whose internal states are entan- entangled state

gled through the use of quantum logic, can improve the
guantum-limited signal-to-noise ratio in spectroscopy. _1 st
Compared to the factorization problem, this application V= 2 (0u[6z - [+ €l 1))
has the advantage of being useful with a relatively small (60)
number of ions and logic operations. For example, for
high-accuracy, ion-based frequency standards [74,189,where ¢(t) = ¢o— Lawot. After applying the Ramsey
190,191], use of a relatively small number of trapped fields, we measure the operar=II\-; S, instead of
ions (L = 100) appears optimum. As outlined here, the J,. This gives Aw)meas= 1/(L?Tr7)"2, which is the max-
states involvingd_ ions which are useful for spectroscopy imum signal-to-noise ratio possible and corresponds to
and frequency standards can be generated witgic the Heisenberg limit [194]. In the language of quantum
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error correction, if we expres¥ in terms of the basis  thatTgis fixed. This constraint would be valid if the ions
stateg0)' = (|0) + |1))/2¥2 and|1)' = (|O) — |1))/2"2, we were subject to a constant heating rate and we desired to
find that ¢ (t) is determined from a parity check of the maintain the second-order-Doppler (time dilation) shift
total state in this second basis [142]. For an atomic clock below a certain value, for example. However, the use of
where the interrogation time is fixed by other con- entangled states may not be advantageous, given other
straints, this means that the timeequired to reach a  conditions. For example, Huelga et al. [198] assume that
certain measurement precision is reduced by a factor of the ions are subject to a certain dephasing decoherence
L relative to the nonentangled atom case. This improve- rate (decoherence time less than the total observation
ment is of significant practical importance since, to time). In this case, there is little advantage of using
achieve high measurement precision, atomic clocks aremaximally entangled states over non-entangled states.
run for averaging times of weeks, months, and even The basic reason is that the maximally entangled state
longer. decohered. times faster than the states of individual
Cirac and Zoller [1] have outlined a scheme for pro- atoms. Therefore, when using the maximally entangled
ducing the state in Eq. (60) using quantum logic gates. state,Tr must be reduced by a factor bffor optimum

Starting with the state?(t = 0) = ITk,|! );|0), we first performance. Because of this, the gain from use of the
apply am/2 rotation (2 ot = 7/4, ¢, = +7r/2 in Eq. (23)) maximally entangled state is offset by the reduced value
to ion 1 to create the staté = 24| 1)y + [1)1)[1 )] 1 )s of Tr. (Huelga et al. [198] actually show that a modest

.. .[4)|0). We then apply the CN gatey;, sequentially improvement can be obtained under these conditions by
between ion 1 and ions= 2 throughL to achieve the use of partially entangled states.) In appendix A, we
state of Eq. (60). An alternative method for generating compare entangled vs nonentangled states in the context
this state is described in Ref. [194]. As a final example, of a practical atomic clock application where a refer-
we consider a method for generating the maximally ence oscillator is locked to the atomic resonance.
entangled state which requires a fixed number of steps,
independent of the number of ions. For simplicity, we
illustrate the method for three ions. Starting with the
state (t = 0) = |1)|1)|1)|0), we first selectively drive

4. Decoherence

g ’ ) - The atomic motional and internal states, and the
one of the ions (say ion 3) with a carrier/2 pulse  (ngic) operations, were described above in an idealized
followed by a redlls;deband pulse to give theﬂ?equence fashion. In this section we consider some of the practical
[DIDID10) — 272 [1)([1) +]1)) [0) — 277[1)]1) limitations to these idealizations. These limitations can
[1)(10)) +1)). We now use the Lamb-Dicke dependence ganerally be grouped under the heading of decoherence
of the carrier transition (Egs. (56)) to make an odd it 1,y decoherence, we mean any effect which limits the

(e\ien) integer number of flips correlated with the  figelity of these operations (see Sec. 4.3). This is a more
[n=0) state and an even (odd) integer numberdfips general use of the term decoherence; in some treat-

correlated with then = 1) state (the laser beam intensity yents decoherence refers only to dephasing of qubit
is assumed to be the same on all ions). We can NOW giates and does not include state changes. Although
employ a transition to an auxiliary level. For example, if - somewhat arbitrary, we also find it convenient to break

the state after the last step, is the staté(31)[1)|1)[1) decoherence into categories: (1) decoherence of the ion
+[1)]1)[1)]0)), we could apply a blue sidebantdpulse  4tion, (2) decoherence of the ion internal levels, and

between statefs ) and|aux of one of the ions (say the (3 decoherence caused by nonideal applied fields
third) followed by a carrierr pulse on this transition to  \\hich are responsible for the logic operations.

carry out the steps™24|1)|1)1)[1) + [1)]4)[L)]0) -
2_112(| 1 >| 1 >|aUX> + |l >| ! >| ! >)|O>) - 2_1/2(| 1 >| T >| 1 > + 4.1 Motional Decoherence
[L)]1)[eN]0). (If the state after the previous step was

2741|110y + |4)]4)]4)|1)), we would sandwich For the trapped ion system discussed in this paper,
the last operation betweem pulses on thdt) - |t) decoherence may be dominated by that of the motional
transition of the selected ion.) state. Scaling of decoherence will depend on the physi-

Other correlated states can also be useful for spec-cal system being treated and the mechanism of decoher-
troscopy. A _strategy which essentially measures the ence [199, 200]. For quantum computation with ions,
variance ofN, is discussed by Holland and Burnett motional decoherence is somewhat easier to character-
[195] and Kim et al. [196]. This method has also been ize than for a general motional state since we are
incorporated into a proposed technique for spectroscopy primarily interested in relaxation of thg = 0) and
of internal states of Bose-Einstein condensates [197]. |n = 1) motional states for a particular mode (for exam-

In comparing the case for entangled vs non-entangled ple, the center-of-mass (COM) mode along the axis of a
states in spectroscopy, the above discussion has assumelkihear trap).
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4.1.1 Phase Decoherence Caused by Unstable Trap wheren is the mean number of motional quanta when

Parameters the ion is in equilibrium with the environment
(0 = [expfiw./ksT) — 117, andy is the relaxation rate of
the energy to thermal equilibrium. Since ion trap exper-
iments will typically operate in the situation where
fiw, << kgT, thenn = kgT/4w,. We will assume the
ion(s) start in the subspace of density matrix elements
PO, Pos, P10 and p;; wherep;; = (ilplj). Equation (62)
implies

A simple form of motional decoherence is caused by
fluctuations in trap parameters. Most likely, by employ-
ing electronic filtering, these parameters fluctuate
slowly on the time scale of the basic operations
(= 1/ ), therefore, the motion is subject to dephasing
due to the corresponding adiabatic changes in motiona
frequency. In the linear trap, if we assurag<< g7,
|8 ﬁgx(s ();T} %i(?céni.;gé’t\:inhl;c\)/re small fluctuation8Vo, pos(t = 0) = \/Ey (7 + 1pis — y(2T + 1/2pon

Sy, /0wy, = 3VolVo — 801/ 07 — BRIR, = —2Mypo1 , poo = — ¥[Npoo — (N + Lpui],
dw,lw, = 120k /k + 3Uy/Uy) . (61) p11=2y(N + 1py— y(3n + 1)p1s + yNpoo . (63)

The relationship between these frequency fluctuations General expressions fopttt and di)/dt are given in
and phase fluctuations in a series of logic operations is Appendix B. Based on these expressions and in the limit
discussed in Sec. 4.3.2. The effects of modulation of thatn >> 1, we will characterize the motional decoher-
these parameters by high-frequency noise is consideredence by the timé* = 1/(ny), which is approximately the

in Sec. 4.1.3 and in Ref. [66]. Although an experimen- time for the ion to make a transition from the ground
tally open question, it is expected that all of these state. This agrees with a classical estimate [103].
parameters could be controlled sufficiently well that

they should not be the primary cause of decoherence. 4.1.3  Radiative Damping/Heating

The electric dipole associated with the an ion's COM
4.1.2 Radiative Decoherence oscillatory motion will couple to thermal (black body)
Decoherence has received considerable attention in°" ambient radiation in the environment. However, since
connection with quantum measurement [201] and has the quelen_gth corresponding to ion oscillation frequen-
been put forth as a practical solution to the quantum cies \{wlltyplgally be _much Iargerthaq the trap electrodg
measurement problem [55,56,57]. In quantum optics, a spacings, this coupling can be described by lumped-cir-
paradigm for decoherence has been to consider relax-_(:u",[ mOd‘?'S [.102’ 103]. In thesg models,. We assume the
ation of the harmonic oscillator associated with a single lon’s motion induces Cl_Jrrents in the nelghborl_ng elec-
mode of the radiation field by coupling to the environ- trodes; these currer_1ts, in turn, couple to the resistance of
ment [202—-206]. This kind of fundamental decoherence the electrodes or circuit elements attac_hed to the elec-
has recently been observed in the context of cavity QED trodes. In experiments vv_he_re these resistances are pur-
by Brune et al. [207]. An important result from these posgly made high tg maximize damping of j[he lon COM
studies is that relaxation of superposition states occurs atmotlon, observed time constants agree Wlt.h the model
a rate which increases with the separation of the states[77’78’79’102’103'104]' In the two (single-ion) experi-

in Hilbert space and almost always precludes the exis- mfrg)ts Wtr."Ch Ih?\/? bt(;en able to gch||e\;eh;oollng tot the
tence of “large” Schidinger-cat-like states except on n="2motlona stat¢, tn€ measured va'u as abou

extremely short time scales. 0.15 s for a'®Hg" ion [44] and about 1 ms for a single

A fundamental source of decoherence for the COM Be’ 'Orl [17’2_1’45’47’131’132’211]' In these expert-
mode of ion motion is understood by considering that ments,t* was intended to be made as long as possible;
the dipole associated with the oscillating charged ion(s) however, the observed values iwere considerably
is radiatively coupled to the thermal fields of the envi- shorter than what we would calculate from the model,
ronment, at temperatuiie The master equation describ- as shown below. . L .
ing the evolution of the density operaofor the motion The model considers the electric-circuit equivalent

: ; : - ; hown in Fig. 6(a). Effectively, the electric-dipole
n the interaction picture) can be written [208,209,210] S"© ; . .
( ! lon picture) wr [ | oscillator formed by the ion COM motion can be consid-

.Y = 0 ered to be confined in a cavity formed by the trap
=Z(h+1 fa"—a"ap — pata : AR
P=2 ( ) (@0 - paa) electrodes. A useful representation of this situation is to

Y oo . model the COM motion (in one direction) as a series
+5n(2pa—-aap- paa) , (62) inductive-capacitivel¢) circuit which is shunted by the
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Fig. 6. Schematic diagrams of the lumped circuit equivalents for the trap electrodes and trapped ion(s). (a) The
left part of the diagram shows, schematically, the electrodes for a Paul trap with hyperbolic electrodes and a
collection of trapped ions. On the right is shown the corresponding lumped circuit equiv@jerpresents the
inter-electrode capacitance (the combined effects of the capacitances shown in the left part of therfigure);
represents the resistive losses in the electrodes and connectingwareds;, represent the equivalent inductance

and capacitance for the COM mode of oscillation in tH{gertical) direction [103]. (b) A schematic diagram of

the endcaps electrode for the trap of Jefferts et al. [211] which was used in the NIST experiments (the ring is
not shown). Induced currents in tegvertical) direction are assumed to follow a path indicated by shading; the
resistance in this path represenis part (a) of the figure. (c) The rf potential between ring and endcaps electrode
(or between pairs of rods as indicated in Fig. 1) is typically generated with a resonant rf step-up transformer. The
resistance in this transformer can, in principle, couple to the ion motion as discussed in the text.

capacitance of the trap electrodes as shown [9, 103]. 1 which can be computed [212]. For traps with hyper-
The resistance is due to losses in the electrodes and bolic electrodes, if we consider motion in tkedirec-
conductors which connect the electrodes. The Johnsontion, d = 2z, (the separation of the endcap electrodes)
noise associated with this resistance can heat the ions[67—70] andx = 0.8 [213,214,215]. For the trap used in
The equivalent inductance of the ion COM motion is the NIST experiments, whem= 130pm, I; = 60 000
given byl, = md¥/L (aq)® whered is the characteristic  henries! The resistance yields a time constant
internal dimension of the ion trap electrodeshe num- I./r = 1/y. This implies [9]

ber of ions, andx is a geometrical factor on the order of
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= L _AQ _ fwd _ dmiw, (64) i+ = Ao, [@}2
' keT ~ keTr ~ 0°Se(w,) ' q°Suy(w,) LEsl -

(65)

For a very small linear trap where= (0.3 mm)?, and
whereQ = wJl_ /1 is the quality factor of the ion oscilla-  for m= 9 u (e.g..’Be") and w,/27 = 10 MHz, we have
tor. The last expression in Eq. (64) shawsn terms of Uo = 17 V. ForEs = 100 V/m andS;, = (1 nV)/Hz (the
the spectral density of electric field fluctuations at the Johnson noise voltage from a @O resistor at room
site of the ion which can be writte®& = 4ksTr (a/d)? temperature), we haw¢ = 430 s. Sincd* = w,d? we
where &gTr is the Johnson noise voltage associated see there is a premium on having a relatively large trap
with the effective resistor. The trap reported in the  with large values ofJ, to keepw;, as large as possible.
NIST experiments had the endcaps made of a single In the above, we assumed that the ions couple to the
piece of molybdenum as shown schematically in Fig. surroundings through the oscillating electric dipole due
6(b) (ring electrode not shown). We assume the induced to their COM motion. In situations where the extent of
currents flow in the endcaps electrode as indicated in the the ion sample is small compared to the distance to the
shaded portion of Fig. 6(b), wheig is the skin depth.  electrodes, the induced currents result dominantly from
This seems to be a conservative estimate since currentedhe COM mode; therefore radiative decoherence from
will also flow in the sides of the endcap electrodes and modes other than the COM mode can be substantially
will not be confined to the skin depth [216], thereby suppressed [1, 103]. For example, for two trapped ions
reducing the effective value af Taking the resistivity aligned along the axis, we would expect electric fields
of molybdenum to bep(Mo) = 5.7 X 10° Q cm, wy = from stray (fluctuating) potentials on one of the end
125pm, andxr = 1 mm, we findr = 2pX/8swr = 0.0415 electrodes to cause an excitation force on ztstretch
Q. If we assumeTl = 300 K,t* = 4.6 s, considerably = mode which is suppressed by a factor equal to the ratio
longer than the observed valuetéf= 1 ms). An alter- of the ion spacing to trap dimensions compared to the
native model for dissipation of charges moving parallel force on the COM mode.
to a nearby surface [200] predicts a much larger value  Fluctuations inV, and U, for Es = O can also cause
of t*. Lamoreaux [217] has derived an expression which heating of the ions. These sources are discussed in Ref.
agrees with Eq. (64), however he chooses a value of [66]. Heating might be caused by parametric processes.
higher than what we calculate. For example, heating could be induced if the trap pseu-

Faster heating will occur it >> 300 K. This can be  dopotential is modulated (coherently or by noise) at
expected at the relatively high powers delivered to the twice the secular frequency. This problem has been
step-up transformer used to generdid= 1 W in the treated by Savard et al. [218] in the context of optical
NIST experiments), but this alone cannot explain the dipole traps for neutral atoms (a kind of Paul trap for an
difference between what the model predicts and the electron to which the atomic core is attached). For the
observed heating rate. Conversely, if the trap can be conditions of the NIST°Be" experiments, this kind of
operated at cryogenic temperatures, this kind of heating heating was estimated to be too small to account for the
should be substantially reduced. observed value of* [66].

Heating can occur in the axial and radial directions
due to the interplay of a stray static field (e.g., from
patch potentials on the electrodes) and nois&lgor Vo Noise from various ancillary electronic devices might
near one of the secular frequencies. Here, we explain pe injected onto the electrodes; this additional electronic
what appears to be one important case, a fluctuation of noise could then heat the ions. Added electronic noise
Uo in the presence of a stray static field along the  can be modeled as a resistorin Fig. 6 that has a
direction of a linear trap. This and other cases are dis- temperature much higher than the ambient temperature.
cussed more fully in Ref. [66]. These sources of noise can be tested by injecting noise

In equilibrium, the force on an ion from a stray static at a level equal to or above the ambient noise level and
field E = EsZis balanced by the field from the trap given  |ooking for a shortening of*. For this test to be valid,
by Eq. (2). We havéss = 2kqUoZequi, Wherezeqi is the  we must have a reliable means of sensing the noise at the
equilibrium position of the ion (here, we assume trap electrodes. This may be difficult to achieve in prac-
Zequi= 0 in the ideal case). A fluctuation ido therefore  tice, since, in the experiments, it is usually desirable to
causes a fluctuation in the electric field seen by the ion. filter the electrodes from the rest of the environment at
We can characterize the spectral density of these field the motional frequencies. This was the case in the NIST

4.1.4 Injected Noise

fluctuations as: (w) = (BJ/Uo)*Sy, (@) whereS, (w) is experiments, where electronic filtering at the motional
the spectral density of potential fluctuations. From frequencies precluded the direct observation of voltage
Eq. (64), we have noise on the electrodes.
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4.1.5 Motional Excitation From Trap RF Fields
symmetrically between endcaps). The effective induc-
The rf fields used for trapping in a Paul trap can lead tance of the ions for this type of coupling is given by
to excitation of the ion motion. We will consider four |} =1./82 Associated witlrs(w) in a small bandwidth
types of effects in which the rf micromotion can, indi- Ay aroundw is a series Johnson noiéé?) = 4ksTAvre,
rectly, cause heating. For the first type of effect consid- The electric field associated with this noise at frequen-
ered, we will analyze heating of the axial motion of a ciesw = {21 £ w, can heat the ion motion in a way
single ion in a conventional spherical-quadrupole Paul similar to the way in which the motion can be excited by
trap; the results can be generalized to other cases sucka coherent excitation at these frequencies [68]. From
as the heating of radial modes in a linear trap. For a Eq. (3.7) of Ref. [68], we see that an electric fiddgz
spherical quadrupole trap, motion in the (axial) applied at a frequency); = w, is equivalent to an
direction has the same form as Eq. (4). If we assume aelectric field [w,/(£2:\V/2)]E12 applied at frequencys,.
potential Vocos((t) is applied between the ring and Therefore, the Johnson noise from the series resistance
endcap electrodes, we have r{w = O £ w,) is equivalent to that from a series
resistances = [w?/(203)]rs (w = Q1 * w,) at frequency
w;. The heating from this source is characterized by the
heating timet*' =11/ (rsn). For the NIST singlBe" ion
experiments, this source of heating was estimated to be
where A, and ¢, are set by initial conditions, negligible.
0. = 8qVo/ (MOQE(ré + 223)), w, = q.02:/8Y2 1y is the inner A second type of rf heating can occur due to the
radius of the ring electrodezgis the distance between Coulomb interaction between ions. In a collection of
endcaps, and we assume< 1. In the radial direction,  ions, such a string of ions in an ideal linear trap, the
the motion will be similar with radial secular frequency Coulomb coupling between ions makes all of the
o = w,/2. From this equation, we see that the ion’s motional modes, except the COM modes, nonlinear.
motion in thez direction has components at frequencies This can lead to excitation of these modes in a Paul trap
o = O = w, Since the rf voltag®/, is typically applied by the driving fields at frequency2;. This excitation
through a resonant step-up transformer [shown sche-and the resulting chaotic motion have been studied
matically in Fig. 6 (c)] the ion’s motion at these frequen- extensively for two ions trapped in a conventional Paul
cies might be expected to couple to the resistaRege  trap. Experiments have been performed at Munich and
between the ring and endcaps associated with this step1BM; these studies are discussed in Ref. [219]. More-
up transformer. At a frequencyn near (2, the over, even for a single (harmonically bound) ion, nonlin-
impedance between the ring and endcaps electrode carear subharmonic excitation can occur if the exciting
be represented by a parallel tuned circuit as shown in field is inhomogeneous [220]. Both types of heating can
Fig. 6(c). This impedance is given by be made negligible when the mode frequencies are not
submultiples of(2;, whena;, g*> << 1, and when all
modes are sufficiently cooled and therefore very linear.
= rgw) +iX(w), (67) Another type of rf heating occurs in some experi-
14 2iQ<w _9T> ments when the conditioa, g2 << 1 is not rigorously
O satisfied and the trapped ions are fairly energetic. The
motion of single ions (or multiple ions when the mutual
where Q is the quality factor for the circuit Coulomb interaction or “space charge,” can be
(Q = Ry/(£2L+1) = Rr2:Cy). Coupling to the effective  neglected) will be unstable when the condition
series resistance(w) should not occur if the endcap pw, + mew, = (¢ is satisfied in a spherical quadrupole
electrodes are placed symmetrically around the ring trap or whermpwy + mewy = €21 in a linear trap) p andm
electrode (as intended). However, since the relative elec-are integers). This type of heating has been observed in
trode positions are difficult to control in small ion traps, some beautiful experiments [221] and has been ex-
a displacement of the ring electrode toward one of the plained theoretically [222]. These “heating resonances”
endcaps will cause a net induced current from ion arise from terms in the trap potential which are higher
motion to flow between ring and endcaps at frequencies order than quadratic. We briefly explain their origin for
o = O = w, We characterize this current (in tte a single ion. For simplicity, we neglect the contribution
direction) byl = Bqz(2zy), wherez is the ion velocity of the static potentials; their inclusion will not change
and B is a geometrical parameter which expresses the the analysis significantly.
coupling to the electrode@E& 0 when the ring is placed

2(t) = A,COS@;t + b,) [1 + %Z cos((th)] . (66)

Z(w) = Rr
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In general, the potential of the trap can be expanded coupling parameters (Sec. 4.1.8) will, in general, be
about the equilibrium position of the ion and written in  very small.
spherical coordinates (0, ¢) as A fourth type of heating due to rf trap fields is ex-
plained as follows. A common problem in ion trap ex-
periments is the presence of stray static electric fields.
These fields can give rise to coherent motion at fre-
quency{2; and potential to heating, which must be ac-
counted for. Stray static electric fields can arise from
potential variations on the electrode surfaces (“patch”
fields) due, for example, to the finite crystalline grain
size of the electrode material [223], or charge buildup
on the trap electrodes. Charge buildup can occur be-
only two terms in the expansion in Eq. (68) contribute, cause, typically, ions are created by electron impact
C.2 = C,o=—(2m/15)2 (For the ideal spherical ionization of neutral atoms which pass through the trap.
quadrupo|e trap, neg|ecting a constant term, 0n|y one Often, the ionizing electrons are also collected by the
term contributesC, o = 4(x/5)Y2) For a nonideal linear ~ €lectrode surfaces. Electrode charging is particularly
trap, the resonance heating can be explained as due tdmportant at low temperatures where, apparently, ad-
terms in Eq. (68) which give rise to a Hamiltonian of the sorbed gases on the electrodes can provide an insulating

&d =V, cosft 2 2 CI m

5] Yin0.0). 68)

=0 m=-

whereY,  are the spherical harmonics ashi a charac-
teristic dimension of the trap. We takk= R for the
linear trap (andl = (r§ + 2z%)"? for the spherical quadru-
pole trap) [67,68,69,70]. For the ideal linear trap
(Eq. (1) withU, = 0, and neglecting a constant term),

form

H = q® = qVynm [%]p Hm cosit . (69)

In the interaction picture for the motion, this becomes

H;:ﬂpv_

2 [R} [yo} <(ax)p (ayD)’“+hc> (70)

where this last expression is the leading term which
satisfies the resonance conditipiay + mw, = . This

surface upon which stray charge resides for long periods
of time (hours).

If stray static electric fields are present, the equi-
librium position of an ion is shifted to a place where the
force from the stray field is counterbalanced by the force
from the pseudopotential. We will analyze the effects of
such stray fields using a classical treatment of the
motion of a single trapped ion. In gener&y,y = Ex
X + By + Eq2z. Stray fields along the direction in a
linear trap merely shift the origin along this direction
and can therefore be neglected. For balance irx toed
y directions, we havé~, = qEx — d(q®P,)/dx = 0 and

interaction will be suppressed because of the inherentF, = g, — d(q®,)dy = 0 whered, is given by Eq. (6).

smallness of high-order anharmonic tertyg, (for sim-

This leads to offsetax and Ay and resultant motions

ple trap electrode shapes) and the smallness of the termswhich are, to first order iy and g, given by

(X/R)? and {/R)™ Furthermore, if thex y modes are
cooled to near the zero-point energy, matrix elements of
the motional operators will be near 1. For large ampli-
tudes of motion, the mode frequencies are not well de-
fined because of anharmonic terms and heating from
this coupling would be expected to occur. In any case,
it is easy to check for a resonant heating of this type by
varying the resonant frequencies and wy relative to

{r. It can also be checked by varying the initial ampli-

tudes of motion in the modes. These tests were used for

the NIST single’Be’ ion experiments; no change in the
heating was observed.
Similarly, in a linear trap ngithL ions, we would

expect resonances to occur whzimew, = 2r wherem
k=1
are integers andy are normal mode frequencies (see

X(t) = (AX + A, COS(wut + ¢y)) [1 + quOS(QTt)]

Ax = qux
mwx

YO = 8y + A coso+ &) 1+ Feoson) |

quy
wy

Ay = (71)

where, as in Eq. (4)Ac and A, are the amplitudes of
secular motion. The presence of the offsétsand Ay
means that the ion motion has an additional component
at frequency(2;. This motion will effectively give rise

Sec. 2.3.2). If all modes are cooled to the point where to sidebands on the applied radiation as seen by the ion,
only a few motional states are excited, then the mode thereby reducing the size of matrix elements between
absorption spectrum will consist of sharp features states. For example, for single-photon transitions driven
around the mode frequencies, and the resonances can by a traveling wave with wavevectér= kX + k.9, the

avoided by changing the trap parameters. Moreover, the electric field from this traveling wave at the site of the
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ion is proportional to exp(kx(t) + ky(t) — ot + ¢]) +

c.c. Terms in the exponential lik&Ax are (constant)
phase shifts which can be neglected. Terms kke
cos(t + ¢y) [1 + (gx/2)cos((2:t)] are just the motion of
the ions in the ponderomotive potential in the ideal case.
The factor from the remaining term,

exp( %X [ky AX — k,Ay] cos((Xit))

= cosfpq cos(2:t)] + isin[¢, cos@ )],  (72)

whereg,, = (0« /2)[k«AX — k,Ay] gives rise to frequency

dent or very slowly varying (< 500 Hz) components
[223]. However, fluctuating patch fields caused by fluc-
tuating adsorbate coverage has been studied in some
cases [229, 230]. These studies differ somewhat in the
low frequency behavior at time scales comparable to
diffusion times, but at frequencies> 1., where 14 is

a time constant characteristic of surface diffusion, they
predict S(®,, v) « v whereS(d,,v) is the spectral
density of rms potential fluctuationd, (in units of
V2—HzY anda = 3/2 [230]. To estimate the effects
of time-varying patch potentials on a single trapped ion,
we assume the ion is sensitive only to the potential on a
portion of a nearby electrode. We take the area of this
portion equal tora; wherea, is the distance between

modulation sidebands on the spectrum which are spacedthe ion and the nearest part of the electrode surface. The

by (. If we consider the carrier or central part of this
spectrum (the first term in the expansion of
cos[pncos(t], we find that the matrix elements are
reduced by the factody(¢p,) compared to the case
where the static fields are absent. Ky << 1, Jo(dq)
=1 —(¢pn/2)* = exp(- (Pn/2)?). Therefore the effect of
the micromotion looks like an additional Debye-Waller
factor due to the smearing out of the atom’s position
over the exciting wave (see the discussion following Eq.
(25) and Sec. 4.3.5).

To the extent that offset fields are constant, they
should not cause heating unless #¢ sidebands give

effects of these potentials on the ion motion in one
direction is then estimated by assuming the ion is cen-
tered between two capacitor plates of ares sepa-
rated by a distanceag The fluctuating potentials on
these plates give rise to a fluctuating field at the site of
the ion which can then excite its motion.

Patch potential fluctuations can be caused by the
fluctuations in the surface coverage from adsorbed
background gas molecules (or atoms). High frequency
fluctuations appear to be dominated by surface diffu-
sion rather than adsorption and desorption [230]. The
number of adsorbed molecules in an ares can be

rise to unwanted spectral components that are close toapproximated byN(6) = 6(wa2)/(wrZ) whered is the

transition frequencies of interest. However, the offsets
Ax andAy can lead to a problem if the trapping field has
noiseV, at frequencied?; * w, that is, Vocosf2:t —
Vocostit + V,cos((2r + w)t + V,cos((2r — wit. In this
case (assumingy = 0 for simplicity), the ion experi-
ences noise fields at frequenciés = o, equal to

E, = — d®/ox = —V,Ax/R?[Eq. (1)]. From the first part

of this section, this is equivalent to noise fields of ampli-
tudeV,Axq/(4R?) applied at frequency, [66]. For the
NIST single®Be" ion experiments, this effect was esti-
mated to be negligible. Moreover, this source of heating
was tested for by purposely applying a static field offset

fractional coverage and, is the radius of the adsorbed
molecule. For low coverage® < 1), the number of
molecules will fluctuate randomhAN = N2 which
leads to fluctuations in coveraged = 6"%,/a,. A sim-
ple model for changes in the surface potential due to
adsorbed molecules is that the molecules are polarized
by the surface and effectively screen the surface poten-
tial. We can relate the change in potential of the plate to
the change in surface coverage®® = kA6 = k¥ ,/
a,, Wherek is a proportionality constant.

If we take S(&,, v) = & (constant) fory < v, and
S(P,, v) = S(v/v)¥?for v> v, we have(D?) = [S(D,,

and seeing if the observed heating rate increased; a nully)dv = 3Sv.. Here(®d?)*? is taken to be equal to the
result was obtained. Experimentally, it has been possible value of A® estimated in the previous paragraph. The

to reduce stray static electric fields by heating the elec-
trodes [191, 224] or cleaning the electrodes with elec-
tron bombardment [225]. Alternatively, they can be

cutoff frequencyw is given byw, = 14z wherety« can
be approximated by = 13/(4D) whereD is the diffu-
sion constant and is the diffusion length [231]. Here,

compensated for with the use of correction electrodes we takelq to be the radius of the effective patdh< a).

[226-228].
4.1.6 Fluctuating Patch Fields

Electrode patch fields might also vary in time; if the

We then find forv > v,

S(dy,v) = 4 ODY2 [(La)z (73)

38y

] V_3l2 ,

spectrum of these variations overlaps the mode frequen-
cies, this could lead to ion heating. Investigations into where an extra factor of 2 has been included to account
patch fields have primarily been done for time indepen- for the two capacitor plates which are placed on either
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side of the ion. To calculate the heating rate from these electrode surface to another are much less théh 46

potential fluctuations, we first note that they will pri- that field emission occurs as if the fields are quasi-static.
marily act over a narrow bandwidth associated with the  Since the onset of field emission varies exponentially
ion’s motional frequency. In this case, we can represent with the applied voltage between electrodes, it is
the fluctuations as coming from the Johnson noise of a possible to check for field emission by varying the trap
resistor at temperaturé@ connected between the capac- potentials by small factors, and monitoring the ion heat-

itor plates, that isS(®,, v) = 4ksTr (assuming the
capacitive impedance is much greater tmdnThere-
fore, we can rewrite Eq. (64) as

* — 4ﬁ(x)z|L
t* = (@) (74)
wherew, is the ion oscillation frequency.

Since the polarizability of molecules and atoms does
not change dramatically for different species, we will
estimatex from a measurement of change in surface
potential for potassium atoms on tungsten. From Fig. 2
of Schmidt and Gomer [232], we find = 3 V. For an
estimate off, we extrapolate the data presented in
Fig. 6.6 of Tompkins [233] for Hon tungsten and find
6 = 0.13 at a partial pressure of #®a. The diffusion
constant for H on Mo is approximately equal to 10
cn? - s [233]. To make a comparison with the heating
observed on a singfBe’ ion in the NIST experiments,
we takely = a, = 130 pm, w,/27 = 11 MHz, L = 1,
l;=6.2x 10*H, r,= 1 nm (Sec. 4.1.3), and we fing
= 2.4X% 107 Hz andt* = 3000 s.

This model is very sensitive to the high frequency
dependence db(®P,, v) on v, and because of the very
low value of v, estimated here, the model should be
refined. However, we note that if the value B{= 1
ms) for®Be’" observed in the NIST experiments is caused
by fluctuating potentials on the surfaces of the elec-
trodes, this would correspond t8(®,, 11 MHz)
= (1.3 nV}/Hz. This should be detectable with a sensi-
tive amplifier. Therefore, independent of the model, this
type of noise may be detectable in a straightforward way.
Conversely, we note that a single trapped ion in the
experiments considered here will be an extremely
sensitive detector of potential fluctuations on electrodes
in vacuum.

4.1.7 Field Emission

Field emission from sharp protrusions on the elec-
trode surfaces can cause ion heating, either from the
direct electron-ion Coulomb coupling or from associ-
ated electronic noise on the electrodes. Field emission
caused by the trap potentials is not unexpected, and field
emission points have been observed to grow in a number
of ion trap experiments. For typical values\Gfand trap
dimensions, the electron transit times from one
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ing rate. This technique appears to have ruled out field-
emission heating in the NIST experiments since the
change in ion heating was much less than a factor of two
whenV, was reduced by a factor of two. This argument
assumes the exponential variation of field emission with
applied voltage; if the emission or some leakage current
is less sensitive to voltage changes, this test may not be
valid. If field emission points are formed, it is usually
straightforward to remove them by momentarily apply-
ing a large negative potential to the electrode in
guestion. The resulting high current is usually sufficient
to “burn out” the field emission tip.

4.1.8 Mode Cross-Coupling From Static Electric
Field Imperfections

According to the scheme of Cirac and Zoller [1], the
operations which provide guantum entanglement of the
internal states of. trapped ions involve the coherent
manipulation of a single modeof collective motion. In
the quantum logic scheme discussed in Sec. 3.3, this
mode is typically taken to be the COM mode along the
axis of a linear trap. A potential source of motional
decoherence is caused by the coupling of this kth mode
to one or more of the [3-1 other spectator modes of
vibration in the trap. If the B-1 other modes of oscilla-
tion are not all laser-cooled to their zero-point energy,
then energy can be transferred to kik mode of inter-
est. Even when the spectator modes are cooled to the
zero-point state, they can act as a reservoir for energy
from the COM mode. This does not lead to heating but
can cause decoherence. Ideally, the ions are subjected to
quadratic potentials as in Sec. 2.1. In practice, higher-
order static potential terms are present; these terms can
induce a coupling between the modes. Similar couplings
are induced by the intentionally-applied time-varying
fields necessary for providing entanglement; these are
discussed in Sec. 4.4.7 below.

We will assume that the higher order field gradients
act as a perturbation to the (harmonic) normal mode
solution. Following the convention of Eq. (30), these
fields will be specified byE; fori €{1,2,. .. 3L} where
the indexi specifies both the ion and direction Bf We
write the electric field at th¢th ion as

Ej = Ej X + EL+j y + E2|_+j Z , 16{1,2, A L} . (75)
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From Eq. (31), we can write the equation of tkth
normal mode as [109, 234]

3L

&2
5_tq wqu = 2 (76)
In general, we can write
E=E({u}) = E{a})
JE;
“eq=0+ S afE|
m11q;
1 L 3L |: ain :|
+ = m + 77
2 E me1 W | 03 {g}=0 ()

where the derivatives are evaluated at the equilibrium
positions. The first term on the right side of this equa-
tion just gives rise to a shift of the equilibrium positions,

and the second term can be absorbed into new defini-.

tions of the normal mode frequencies. The second-
order term (last term shown in this equation) can reso-
nantly couple two modes of oscillatiohgndm) to the
normal mode of interedt. We find a possible resonant
term:

9°Ey ]
9% o] q3=0 °

Dx Gi0m [

(78)
where thd andm mode frequencies satisfy + wn| =
wx. This type of coupling can either add to or extract
energy from modé, depending on the relative phases
of motion in the three modes. By substituting the free
solution to modes andm [q;(t) = Q;exp(Ei(wjt + ¢;)]
into the last equation, we find that f(t = 0) =
(dgi/dt),=o = 0, the driven solution to the amplitude of
modek initially grows linearly with time:

3L

2L > leQm[

2Mawy 01

i)
A Iqm] {a}=0

lak ()| =

(79)

We illustrate with an approximate numerical example
which might have been expected to play a role in the
heating that was observed in the NIST experiments.
In those experiments, performed on sinte’ ions, the

For a single ion, the three normal modes are just the
oscillation modes along the, y, and z directions
(=X, 0. =Y, 0z = z; D = 8,«). The mode frequencies
were (wx, wy, w,)27 = (11.2, 18.2, 29.8) MHz, thus
approximately satisfying the conditiat + wy = w,. For
sake of argument, we assume this resonance condition to
be exactly satisfied. We consider heating of threotion
assuming both thg andz modes are excited. From Eq.
(79), we find|x(t)| = |qtAA,[0°Ex/0y 8Z] (y = 2= o) /(2Mawy )]
whereA, and A, are the amplitudes of motion in the
andz directions. For simplicity, we neglect the fact that
energy is exchanged between the three modes; that is,
we assume the amplitudes of thandz motion remain
fixed. In this approximation, i, = A, = £, the time it
takes to excite th& motion to the same amplitud&)(

is given byt = |2mawy/(Q€[0°Ex/dydZ]y=2=q)|. If & =

10 nm (corresponding t,) = (A,) = 1 for the condi-
tions of the singléBe" ion NIST experiments, the field
gradient required to drive the x motion to an amplitude
of 10 nm (f,) = 1) in the observed time of 1 ms is
approximatelys’E, /oydz = 1000 V/mmi. It is highly
unlikely the gradient was this large for the NIST exper-
iments, and, furthermore, the resonance condition was
only approximately satisfied. Moreover, this source of
heating was easily tested by varying the initial values of
A, and A, (by varying the Doppler-cooling minimum
temperature through laser detuning) and studying the
heating rate of th& motion which had previously been
cooled to the zero point of motion. No dependence on
the initial values ofA, andA, was found. In any case, if

all modes of motion are initially cooled to the zero-point
state this source of heating vanishes because the as-
sumed coupling only provides an exchange of energy
between modes. This places a premium on cooling all
modes to as low an energy as possible. Finally, it 